指定した音声ファイルを、楽器ごとのパートに分解してくれるソフトです。 音声ファイルをドラッグ&ドロップで放り込むと、該当のファイルを ボーカル ベース ドラム その他(キーボード、ギター 等) ボーカル以外のインストゥルメンタル といった 5 つのファイルに分解してくれます。 処理を GPU(CUDA)で実行することもできます。
はじめに最近、LLMへのRAGを用いた文書データの連携等を目的に海外を中心にOCRや文書画像解析技術に関連する新しいサービスが活発にリリースされています。 しかし、その多くは日本語をメインターゲットに開発されているわけではありません。日本語文書は、英数字に加えて、ひらがな、漢字、記号など数千種類の文字を識別する必要があったり、縦書きなど日本語ドキュメント特有のレイアウトに対処する必要があったりと日本語特有の難しさがあります。 ですが、今後、海外の開発者がこれらの課題に対処するため、日本のドキュメント画像解析に特化したものをリリースする可能性は低く、やはり自国の言語向けのサービスは自国のエンジニアが開発すべきだと筆者は考えています。 もちろん、Azure Document Intelligenceをはじめとした、クラウドサービスのドキュメント解析サービスはありますが、クラウドを利用できないユ
最近、ローカルLLMがアツくなっているという話をtwitterでチラホラ見かける。 ローカルLLMって何じゃ?というと、オープンに公開されているモデルのウエイトをDLしてきて手元のPC上で推論させる事である。 オープンなAIモデルとは逆の存在として、モデルがDLできないクローズなAIモデルもある。 OpenAIやAnthropicのような最先端AI企業のクローズなAIモデルに比べて、オープンに公開されているオープンなAIモデルの性能は今でもかなり後れを取っている。 だから去年の間はあくまでAIの本命はChatGPTのようなクローズモデルであって、オープンなAIモデルなんて眼中にありませんみたいな風潮が無くはなかった。だが最近は風向きが少々変わってきている。 GPTのAPI高い問題 & OpenAIがAIベンチャー皆殺しにしてしまう問題 まず「結局GPTのAPIを叩いてサービス運営して成功し
みなさまお元気ですか 暑さも少し落ち着いてきて、ようやく外に出てもいいかなという気になってきました。季節の変わり目体調には気をつけていきたいですね。 実は、一ヶ月くらい前に Linux PC を自作して Mac から移行しました。そのときの考え、その後の感想を残しておきます。 また、学んだことや作業のログを細かく残しておきたいと思います。(どこかの誰かが不安に思ったときに同じ失敗や疑問を経験した人がいて安心してもらえたら嬉しい) Ubuntu のインストール画面 (ベストオープンソースと開発しよう!) 目次 Mac をやめるきっかけ、経緯 Ubuntu に移行して一ヶ月の感想 おまけ1: どのような PC になったか おまけ2: 事前に学んだこと おまけ3: PC の組み立て おまけ4: Ubuntu のセットアップ 加筆/修正 指摘のあった誤字を修正 NVEnc について誤った内容があっ
2022年8月23日に無料公開された画像生成AI「Stable Diffusion」は、「ボールで遊ぶ猫」「森の中を走る犬」といった指示を与えると指示通りの画像を出力してくれます。Stable Diffusionはデモページで画像生成を試せる他、NVIDIA製GPUを搭載したマシンを用いてローカル環境で実行することも可能です。しかし、デモページは待ち時間が長く、NVIDIA製GPUは所持していない人も多いはず。Googleが提供しているPython実行環境「Colaboratory」を利用すれば、NVIDIA製GPUを所持していなくともStable Diffusionを待ち時間なしで実行する環境を無料で整えられるので、実際に環境を構築する手順や画像を生成する手順を詳しくまとめてみました。 Stable Diffusion with 🧨 Diffusers https://huggingf
"Locality is efficiency, Efficiency is power, Power is performance, Performance is King", Bill Dally マルチスレッディングとは? CPUとGPUのマルチスレッディングの違いをブログにまとめていたけど例によって誰も興味なさそう— arutema47 (@arutema47) 2021年8月16日 つぶやいたら読みたい方が多そうだったので完成させました。 マルチスレッディングとはメモリ遅延を隠蔽しスループットを上げるハードウェアのテクニックです。 ただCPUとGPUで使われ方がかなり異なるため、その違いについて考えてみる記事です。 (SIMDについて並列プログラミングの観点から触れるべきでしたが、時間無いマルチスレッディングに注目するため初版では省きました。) 本記事について 本記事はCPUとG
ITはもう面白くなくなってますね。 技術が面白いときには、いろいろ新しいものが出て性能あがったりできることが増えたりします。調べたらどんどん新しいものが出てくるし、新しいものもたくさん作るし、面白い。ですが、IT技術は一通り出そろって、成熟期に入っています。そうすると新しい技術に出会うことも新しいものを作ることも減っていきます。その結果、いままでの変化のあった状況を知っていれば、つまらんってなりますね。 ※2024/8/24 追記 言いたいことをまとめると、IT素振りのネタ探しに苦労するようになったよねってことです。 結局のところITというのは新しいハードをどう動かして社会に実装していくかというものなので、新しいハードが出ないとどうしようもないのです。けれどもだいたい飽和してしまった。 雑にいえば、これまで1980年くらいにBASIC搭載8bitパソコンが普及するとBASICプログラミング
- はじめに - Pythonのパッケージ管理ツールは、長らく乱世にあると言える。 特にpip、pipenv、poetryというツールの登場シーン前後では、多くの変革がもたらされた。 本記事は、Pythonパッケージ管理ツールであるpip、pipenv、poetryの3つに着目し、それぞれのツールに対してフラットな背景、技術的な説明を示しながら、所属企業内にてpoetry移行大臣として1年活動した上での経験、移行の意図について綴り、今後のPythonパッケージ管理の展望について妄想するものである。 注意:本記事はPythonパッケージ管理のベストプラクティスを主張する記事ではありません。背景を理解し自らの開発環境や状態に応じて適切に技術選定できるソフトウェアエンジニアこそ良いソフトウェアエンジニアであると筆者は考えています。 重要なポイントのみ把握したい場合は、各章の最後のまとめを読んで頂
話題のStableDiffusionがオープンソースで8/23に公開されたので、手元のマシンで動かすまで試したいと思います🖼 (下記に記載していますが、自分の環境だとVRAMが不足しているエラーが出てしまったのでイレギュラーな対応をしています🙏) ※ ↑追記 コメント欄にて、 @kn1chtさんが紹介してくださっているように、マシンのVRAMが10GB未満の環境では半精度(float16)のモデルがオススメされています。 本記事では、別の最適化されたものを紹介していますが、こちらの利用も検討してみると良さそうです👉 https://zenn.dev/link/comments/7a470dc767d8c8 StableDiffusionがどんなものかは、深津さんの記事が参考になります。 1. 環境 Razer Blade (RTX 2070, VRAM 8GB) CUDA Toolk
はじめに はじめまして、8月にコネヒトに入社したy.ikenoueです。 突然ですがみなさん、生成AIは使っておりますでしょうか? ChatGPTやStable Diffusionといった代表的な生成AIの発表から約1年が経過し、そろそろブームも落ち着くかと思っていたのですが、つい先日もOpenAI DevDayにてChatGPTに関する様々なアップデートが発表されるなど、相変わらず目まぐるしい日々が続いていますね。 弊社における生成AIの活用状況はというと、以前に下記の記事にて、Slack上でChatGPTと会話できる環境を社内提供しているという取り組みをご紹介しました。 tech.connehito.com 本日は、上記の社内ツールに新たに追加した「社内文書の参照機能」についてご紹介します。 「社内文書の参照機能」の概要と開発動機 まずは「社内文書の参照機能」の概要と開発にいたった動機
写真に写り込んだ不要な被写体や、画像の中に含まれる邪魔な文字など、画像の一部を消したい状況は多く発生します。画像の中の不要な部分をキレイに削除できる無料ツール「Lama Cleaner」を見つけたので、PCへの導入方法や使い方をまとめてみました。 GitHub - Sanster/lama-cleaner: Image inpainting tool powered by SOTA AI Model https://github.com/Sanster/lama-cleaner Lama CleanerはPython向けのパッケージ管理システム「pip」を用いてインストールすることもできますが、今回はPythonなどの準備が整っていないPCでも一発で「Lama Cleaner」をインストールできる「Lama Cleaner One Click Installer」を使ってPCにインストール
やはり予想を超えてこなかったGPT-4と、GPUの未来、ホビイストへの手紙 2023.03.16 Updated by Ryo Shimizu on March 16, 2023, 08:00 am JST 3月14日の早朝、GPT-4が公開され、筆者は早速試した。 その後、開けて3月15日の早朝、APIも部分的に解放され、筆者はそれも試した。 その上で、先週書いた記事の内容についての確信が深まった。 やはり、GPT-4は期待を超えてはこなかった。 GPT-4は、ChatGPT Plusに入会すると誰でもすぐに使うことができる。APIだけは招待制だが、それも筆者と同じくらいのタイミングでアンロックされた方も少なくないのではないか。 100倍規模のパラメータがあっても、アプローチには限界があるのである。 また、ChatGPTが注目を集めたことで、これまで下火になっていた他の大規模言語モデル(
おいおいまたかよ、驚き屋かお前はと言われそうですが、またゲームチェンジャーなんですよ。ほんとすいません。全部AIが悪いんです。 AI関連はちょっと目を離すと取り残されてしまいます。後から来たのに追い越され、泣くのが嫌なら歩いていくしかないのです。今回、それが再びAI音声合成で起きました。 筆者はAIアートグランプリを受賞したおかげでいろいろなところから取材を受けたり自分でも解説記事を書いたりしていますが、その中で、Diffusion(拡散)モデルを使ったDiff-SVCというAI声質変換によってリアルな元音声を再現できると説明してきました。ですが、これからは「実は今は新しいAI技術を使っているんですよ」と付け加えなければいけません。 妻の歌声を合成するのに使っていたDiff-SVCから別の新しい技術に乗り換えてしまったのです。 Diff-SVCが出た後に、So-VITS-SVC(SoftV
入力した文字列から高精度な画像を生成できるAI・Stable Diffusionは2022年8月に無料で一般公開され、「基本的に出力した画像は商用・非商用を問わず、自由に利用できる」というライセンスで大きな話題となりました。しかし、Stable DiffusionをローカルなWindows環境に導入して使うには、PythonやAnacondaなどを扱える技術や知識が求められるため、初心者にとっては敷居がやや高いといえます。そんなStable Diffusionを一発でWindows環境にインストール可能で、さらにシェルでのコマンド入力ではなくグラフィックユーザーインターフェース(GUI)で画像生成の指示も簡単にできる「NMKD Stable Diffusion GUI」が公開されました。 My easy-to-install Windows GUI for Stable Diffusion
2. ライセンスの確認以下のモデルカードにアクセスして、ライセンスを確認し、「Access Repository」を押し、「Hugging Face」にログインして(アカウントがない場合は作成)、同意します。 4. Colabでの実行Colabでの実行手順は、次のとおりです。 (1) メニュー「編集→ノートブックの設定」で、「ハードウェアアクセラレータ」に「GPU」を選択。 (2) 「Stable Diffusion」のインストール。 # パッケージのインストール !pip install diffusers==0.3.0 transformers scipy ftfy(3) トークン変数の準備。 以下の「<HugginFace Hubのトークン>」の部分に、先程取得したHuggingFace Hubのトークンをコピー&ペーストします。 # トークン変数の準備 YOUR_TOKEN="<H
AIが画像を自動生成してくれる「Stable Diffusion」がすごい。これを使ったサービス「DreamStudio」は1枚6秒ほどで画像を生成してくれて早いが、無料枠を超えて使うには課金が必要になる。 Google Colabという、Pythonの実行環境を提供してくれるサービス上でStable Diffusionを動かせるそうだ。お金はかからない。1枚の画像生成にかかるのは30秒ほど。その方法は以下で解説されている。 Google Colab で はじめる Stable Diffusion v1.4|npaka|note 自分でもやってみて、今は無事にStable Diffusionを使えるようになっている。しかしGoogle Colabを使うのも初めてだったので上の記事だけだと詰まるところもあった。ここではそれを解説したいと思う。 ライセンスの確認 Hugging Faceのトー
本記事では、時系列予測に利用できるpythonのライブラリの使い方について説明をします。 パッとライブラリを使うことを目指すため具体的なアルゴリズムの説明は省きます。 ※説明が間違えている場合があればご指摘いただけると助かります。 目次 利用データ ライブラリ Prophet PyFlux Pyro Pytorch Lightgbm 補足:Darts まとめ ソースコード このブログで記載されているソースコードはGitHubに上げておいたのでもしよろしければ参考にしてください。 github.com 利用データ 今回用いるデータはkaggleのM5 Forecasting - Accuracyと呼ばれるコンペティションで利用されたデータを用います。 作成したランダムなデータよりも実データのほうが予測をしている感があるからです。 予測に使うデータはwalmartの売上データです。 下図はその
Transformerは分散できる代償として計算量が爆発的に多いという不利がある。 一度みんなが忘れていたリカレントニューラルネットワーク(RNN)もボケーっとしている場合ではなかった。 なんと、GPT3並の性能を持つ、しかも完全にオープンな大規模言語モデルが公開されていた。 そのなもRWKV(RuwaKuvと発音しろと書いてある。ルワクフ?) RWKVはRNNなのでGPUメモリをそれほど大量に必要としない。 3GBのVRAMでも動くという。 時間がない方はビデオをご覧ください 僕の失敗は、何も考えずにgit lfs installでディレクトリごとコピーしようとしたこと。 このディレクトリには過去のモデルデータが全部あるので、ひとつ30GBのモデルデータを何十個もダウンロードしようとしていて終わらなかったのだ。 モデルデータは一とつあれば十分なのでひとつだけにする。 次に、chatのリポ
結論から言うと、こんなことができます。 カラーイラストを線画にすることも可能です。 先日、AI-AssistantV3なるお絵描き補助AIフリーソフトを公開したのですが、多くの方から『私のPCじゃ動かん!』というご意見をいただきました。 わかる~!ちょっとAIに興味あるだけの人が20万↑のPCに手を出せるわけないよね。それが本当に使えるモノかどうかもまだわからないのに。 私もできる範囲で動作サポートするものの(抜けていたらすみません!) 元々のPCのスペック問題自体はどうしようもないジレンマに葛藤していました。 ならばスマホからでも動くシンプルなwebアプリ作ったろうじゃん!!! と思ったので作りました。 機能限定版AI-AssistantV3みたいな立ち位置だと思って下さい。まぁ微妙にアルゴリズム違うんで厳密には別物ですが。 【追記】勘違いする方もいるっぽいので明記しておきます! こちら
先日プログラミング言語 Mojo と呼ばれるもののアナウンスメントがあった。この言語のデザインが私のスイートスポットに刺さる感じだったので、今のうちから注目している。使いたいなというか、将来使うことになりそうな言語なので簡単に何ができそうかを調査してまとめておきたい。 ウリとしては「C 並のパフォーマンスが出る Python」といったところだろうか。 k0kubun さんからコメントを裏でもらって、これって要するに並列化とか SIMD 化とか入れたら35,000倍のパフォーマンスが出るようだけど、これは Python の部分とは呼べなくて、素の Python 動かして本当にそういえるかは怪しくない?とのことで、判断保留します 🙇🏻♀️ k0kubun さんありがとう 言語のデザインとしては、AI 開発に向けたプログラミングを提供できるよう設計されていると感じる。表側は Python
Ryzenはゲーム用CPUとしては特に問題ないのだが、 ソフトウェア開発においてはIntelのCPUに比べて不便なポイントがいくつかある。 日々業務で使っていてあまりにもストレスが溜まるので、CPUをIntel Core i7に変更した。 このマシンは8年前に組んだ自作PC なのだが、使っていて不便を感じたパーツを差し替え続けた結果、 今回のアップデートで全てのパーツが当時とは違うものに変わったため、 それぞれ古い方のパーツで不便だったポイントなどを紹介したい。 仕事で使う自作PC 社内のサービスをいじる時は会社から貸与されているM1 MacBook Proを使うのだが、このマシンは不便である。 Rubyのビルドは自分のLinuxのマシンに比べ2倍以上遅いし、Reverse Debuggingができるデバッガが存在しないし、 慣れたツールであるLinux perfも使えないし、Podman
今日のウィークリーAIニュースではnpaka大先生と一週間のニュースを振り返った。今週もいろいろあったが、なんといってもダークフォース、GPT-4越えと言われるXwin-LMである。中国製。 大先生もまだ試してないというので番組内で一緒に試してみた。 もちろんドスパラ製Memeplexマシン(A6000x2)を使用。 >>> from transformers import AutoTokenizer, AutoModelForCausalLM >>> model = AutoModelForCausalLM.from_pretrained("Xwin-LM/Xwin-LM-7B-V0.1") Downloading (…)lve/main/config.json: 100%|██████████████████| 626/626 [00:00<00:00, 56.2kB/s] [2023
言語&開発基礎編 PythonやSQLなどの言語と開発環境に関連することをまとめました。 機械学習に関する教材はこの次のセクションにまとめてあります。 学習環境 インストール及び使い方チュートリアルのサイトと、ある程度使い慣れた後に役立つtips集を各エディタでまとめました。 Google Colaboratory Python初学者にとって最もわかりやすいPython実行環境です。プログラミングは初めて!という方はまずこのGoogle Colaboratory(通称: Colab)から始めてみて、使い方がある程度わかったら、そのまま次のセクションのPython編に移りましょう。 Pythonプログラミング入門 難易度: ★☆☆ 東京大学の公開しているPython講座ですが、冒頭でColabの使い方を解説しています。使ったことのない方はこちらから! Google Colabの知っておくべき
オンラインイベント「Microsoft Build 2020」を開催中のマイクロソフトは、「Windows Subsystem for Linux 2」(WSL 2)の正式リリースを発表しました。 WSL 2は、Windows 10でLinux互換機能を提供するWSLの次期バージョンです。 現行のWSLがLinuxカーネルシステムコールをWindowsカーネルシステムコールに変換するという実装で互換機能を提供するという仕組みなのに対し、WSLではこれを刷新。Windows 10内部に用意した軽量な仮想マシン内で本物のLinuxカーネルを実行することで、より高い性能と互換性を実現しています。 これによりLinuxコンテナなどもWSL 2で実行可能になります。実際、Docker社はWSL2に最適化したDocker Desktopをリリース予定です。 WSL 2は今月中にリリース予定のWindo
物理学者の逆襲!?Entropixはわずか3億6000万パラメータで1000億パラメータ級の回答を引き出す!Claude-3でも間違う問題を360Mが正しく解く 物理学者たちがノーベル物理学賞をホップフィールドとヒントンが受賞すると知った時、まあまあ微妙な気持ちになったことは想像に難くない。 我々コンピュータ科学者にとっては、ノーベル賞は全く無縁なものだった。むしろ「ノーベル賞をコンピュータ科学者が取ることは永久にない」と言い訳することさえできた。コンピュータ科学の世界にはチューリング賞という立派な賞があるし、ノーベル賞よりも賞金が高かった京都賞は、アラン・ケイやアイヴァン・サザーランド、ドナルド・クヌースなど、コンピュータ科学者たちが堂々と受賞している。その割には本来マイクロチップの最初の設計者である嶋正利などが京都賞にノミネートされていなかったり、サザーランドの弟子であるアラン・ケイの
#stablediffusion 完全に理解した pic.twitter.com/IR5yjnL07Y— すぎゃーん💯 (@sugyan) August 31, 2022 ということで少し触って遊んでみたのでメモ。 Stable Diffusion をザックリ理解 先月公開された Stable Diffusion。 stability.ai 高精度で美しい画像を出力できる高性能なモデルながら、Google Colab などでも手軽に動かせるし、 Apple silicon でもそれなりに動かせる、というのが魅力だ。 中身については 以下の記事の "How does Stable Diffusion work?" 以降のところが分かりやすい。 huggingface.co 図をそのまま引用させていただくと という仕組みになっていて、受け取る入力は "User Prompt" と "Late
「CPU最強 vs. GPU最強」──進化する将棋AIのいま プロに勝利した「Ponanza」から「水匠」「dlshogi」まで:プロ棋士向け最強将棋AIマシンを組む!(1/4 ページ) 将棋のプロ棋士である広瀬章人八段向けに「最強の将棋AIマシン」を組むべく奔走する本連載。前回は、プロ棋士の間でコンピュータを使った研究が本格化していること、必要な演算装置には多コアCPUである米AMDの「Ryzen Threadripper」や並列計算の多いAI処理に向いたGPUがあることを紹介した。 今回注目するのは、「CPU計算による将棋ソフト」と「GPU計算による将棋ソフト」のいまの実力と、それにつながる技術的な変遷についてだ。 コンピュータ将棋がプロに勝った日 その技術は“AIブーム”にあらず コンピュータ将棋の歴史は長く、コンピュータ将棋協会が主催する「世界コンピュータ将棋選手権」の第1回は19
せっかく課金したのにユーザが増えまくっているのか滅茶苦茶重くなっていて最悪。 だから流出したモデルを使ってローカルでNAIの環境を構築する。 ネットには情報もだいぶ転がってるけど陳腐化した情報があまりに多いため増田にまとめることにした。 もしかしたらこの記事もすでに陳腐化しているかもしれないが…単純に間違ってたらトラバで教えてほしい。 もちろん自己責任。この記事を見て導入した結果何かあっても増田は何も保証しない。 英語がわかる人はこっちを見た方が早いと思う。今は導入RTAができるくらい導入は楽になっている。 https://rentry.org/nai-speedrun 推奨環境VRAMが2GB以上あるNVIDIA製のグラフィックボードがあればローカル環境を構築できる。 GPUの世代はGTX700シリーズ以降。なので一昔前のミドル級ボードでも動作するらしい。 IntelのオンボードGPUで
Dockerを使った機械学習環境の構築方法 株式会社松尾研究所で働いているからあげ(@karaage0703)です。松尾研究所では、機械学習(ここでは、予測モデル、画像認識からLLMまで幅広く扱います)を使う多数のプロジェクトが走っています。プロジェクトの特性は多種多様なので、環境構築方法は様々なのですが、松尾研究所では、環境構築方法の1つとしてDockerを推奨していています。今回はDockerを使った機械学習環境の構築方法を紹介します。 松尾研究所の特にインターン生を想定した記事にはなりますが、他の組織、個人の方にも参考になる部分があるかと思いWebに広く公開させていただきます。 なぜDockerで機械学習環境を構築するのか? 具体的な手法に入る前に、まずはDockerで機械学習環境を構築する理由から説明したいと思います。説明が不要な方はここはスキップしてもOKです。 そのために、Do
ここで知った。 試しに、神戸市が公開している観光に関する統計・調査資料のうち、「令和5年度 神戸市観光動向調査結果について」のPDFで一度試していたのだけども: (出典) 神戸市Webサイトの「観光に関する統計・調査」のページ 上記にある「令和5年度 神戸市観光動向調査結果について」のPDF 日本語でも、概ね問題なく、表などもきれいにパースされる ただし、表が画像 になってる場合に、うまく解釈されない(表は解釈されるが、中の文字が化ける) OCRが正しくできていない可能性 というのがあって、ドキュメント読んだけどわからなくて、それ以上深追いしてなかった。 ただ、X界隈を見る限りは評判は良さそうで、いろいろ記事も出てきたみたいなので、改めて試してみる。 GitHubレポジトリ ドキュメント Docling Doclingは、ドキュメントを解析し、簡単かつ迅速に希望の形式にエクスポートします。
もしあなたがLLMを使ったプロダクトを何かしら開発している、もしくは興味があるのなら、メモリを大量に積んだMac Studioの購入を検討すべきです。 対象読者NVIDIAが絶対にいいという人はこの記事の対象読者ではありません。また、用途によって、ローカルマシンによるローカルLLMが向いてる・向いてないは明確にあるので、向いてない用途にしか使わない人も対象読者ではありません。あしからず。 また、この記事は別にNVIDIAをdisる意図はありません。みんな違っていい。NVIDIAもいい選択肢ですが、Mac Studioも悪くないですよ、と言いたい。 結論LLMプロダクト開発において、今年はもはやローカルLLMを無視できない、してはいけない状況です。 LLMプロダクト開発をする会社の視点でいえば、是非とも80GB以上の十分なGPUメモリを積んだマシンを用意できるようなアジリティを持つのが望まし
(雑に書いている戯言であることを最初に断っておきます。あくまで個人の感想です。) 実は私は今までRISC-Vには懐疑的だったのですが、最近の状況を知って考えを改めました。 RISC-Vとは RISC-V(リスク ファイブ)とはオープンソースライセンスで提供されている命令セットアーキテクチャ (ISA)です。 研究にも使うことができるし、実際に多くの半導体メーカーがこの仕様に基づいたCPUを開発、出荷しています。 多くのオープンソースのOSやツールチェインもすでにRISC-Vに対応しています。 私が懐疑的だった理由 RISC-Vはオープンソースであるゆえ、自由に拡張することができます。そのため様々な派製品が登場しています。シンプルな組み込み用のマイクロコントローラからパソコン用、サーバ用、HPC用など広い分野に渡ります。 かつてRISCの考え方にもとづいて開発されたMIPSというCPUがあり
本講座では計8回にわたり、ディープニューラルネットワークの原理と実装について 説明してきた。ニューラルネットワークの原理は基本的には 勾配降下法であり、その基盤となっているのが関数の微分可能性である。 ニューラルネットワークにはさまざまな形態が存在するが、 画像処理・画像認識の場合は畳み込みニューラルネットワークが非常に 有効であることがわかっている。また、ニューラルネットワークの 出力形式や損失関数を変えることにより、ニューラルネットワークが 物体検出や奥行き推定など、さまざまなタスクに利用可能であることを紹介した。 さて、本講座は「真面目なプログラマのための」ディープラーニング入門、 と銘打っている。真面目なプログラマとは何か? 諸説いろいろあるだろうが、 多くのプログラマは、ソフトウェア開発において 仕様の明確さや、 システムの効率・堅牢性、そして 保守のしやすさといったものを 追求
はじめに WSL2(Windows Subsystem for Linux 2)は、Microsoft Windows上でLinuxカーネルを直接実行できるようにする機能です。 この記事ではWSL2環境にDockerを導入しGPUを用いた機械学習環境を構築する手順を紹介します。 構築イメージは以下の図の通りです。NvidiaGPUを搭載したマシンにWSL2環境を構築します。Dockerを用いてコンテナを用意し、CUDAは各コンテナ内のCUDA Toolkitを用いて利用します。 今回開発するPCのスペックは以下の通りです。 Windows 11 Windows version: 22H2 GPU:NVIDIA Geforce RTX 3060 12GB 設定 1. WSL2を有効化 デフォルトではWSL2環境が無効化されている可能性があるので、始めに有効化しておきましょう。 「コントロール
しぴぴぴ! Vtuberのしぴちゃん (https://www.youtube.com/@CP-chan)です。普段はゲーム配信しかしてませんが、たまにAIについて発信することがあります。今日はAIの記事の方。 現在はローカルAIモデルに関する連載をしています。 第一弾 本記事(DeepSeek R1をほぼ準備なしからローカルGPUで動かす) 第二弾 Cline+ローカル版DeepSeek R1でAIコーディングを使い放題にする(高スペックマシン向け) 最近話題のローカルで動くLLM、DeepSeek R1 をローカルGPU環境(NVIDIA)で動かしてみましょう。 多少のコマンドラインの操作ができれば、事前にローカルLLMを触ったことがなくてもインストールできるように書くつもりです。 サムネはDeepSeek R1くんに画像を生成してもらおうとしたところです(そんな機能はありません)。
ITジャーナリスト/Publickeyブロガー。IT系の雑誌編集者、オンラインメディア発行人を経て独立。2009年にPublickeyを開始しました。 AIスタートアップのCognitionは、自律型のAIソフトウェアエンジニア「Devin」を発表しました。 Devinは人間が課題を与えると、自律的に情報を参照し、コーディングやデバッグ、デプロイを行い、システム構築を実現するAIソフトウェアエンジニアだと説明されています。 Cognition AI CEOのScott Wu氏以下はデモ動画からのキャプチャです。 Devinは人間のソフトウェアエンジニアと同様に、自身のコンソール画面(右上)、コードエディタ(右下)、Webブラウザ(左下)を持っています(左上は人間とチャットでやり取りする領域)。 人間がプロンプトで何らかの課題を与えると、まず課題解決のためのプランを生成します。 今回、Dev
Teedyはさまざまな種類のファイルの中身を読み取って検索できる状態にしてくれるドキュメント整理ツールです。受信したメールを自動で取り込む設定もできるとのことなので、実際にセルフホストして使い勝手を確かめてみました。 sismics/docs: Lightweight document management system packed with all the features you can expect from big expensive solutions https://github.com/sismics/docs TeedyのインストールにDockerを利用するので、下記のリンクから自分の環境に合った方法でDockerをインストールします。 Install Docker Engine | Docker Documentation https://docs.docker.com
はじめに いつもNVIDIAが載っているWindowsで楽しくLLMを動かしたり生成AIライフを楽しんでいますが、今回はMacOSでOllamaを入れてLlama3を動かしてみました。 スペック: Apple M1 Pro(16 GB) 少し前だとCUDAのないMacでは推論は難しい感じだったと思いますが、今ではOllamaのおかげでMacでもLLMが動くと口コミを見かけるようになりました。 ずっと気になっていたのでついに私のM1 Macでも動くかどうかやってみました! 結論、爆速で推論できていたのでとても驚きました。OSS開発に感謝です! Ollamaとは OllamaとはローカルでLLMを動かすことができるアプリケーションです。 以下からダウンロードできます。 MacOSとLinuxで使うことができます。Windowsもプレビュー版があるみたいです。 #いざ推論 ダウロードができたらシ
はじめに はじめまして。株式会社ずんだもんのアルバイトエンジニアのinadaです。 今日は誰でも作れるずんだもんと題してローカルPCにずんだもんAIを作ります。この記事はそのチュートリアル記事です。 (誰でもと書いてますが、RTX 3060(12G)搭載以上のPC推奨です。CPUマシンでも出来る部分はありますが非推奨です。RTX 3060(12G)のグラボは5万ぐらいで買えるので持ってなければ買っちゃいましょう。) 対象読者/記事の範囲 ローカルPCで動かせる大規模言語モデルを、学習用のデータの用意から、学習、動かすところまで一通りどんなものか、お試ししてみたい人。 自分だけの世界にただ一人だけのうちの子、またはパートナー(うちの嫁)を作り育てたい。そんな沼にはまりたい、興味がある人。 AIの仕組みや用語は当記事では解説しません。AIの用語(モデル, loss, epoch, checkp
なぜタヌキなのか? その謎は謎のままだが、とにかく日本語性能がGemini1.5Proに次ぎ、少し前のGPT-4よりも高い上に商用利用可能という太っ腹仕様なので使わない手はない。むしろこれさえあればもう誰もGPTに課金しなくて済む、そんな未来が来るのかもしれない。 しかし、Tanukiは特殊な何かをしてるらしくMLXに簡単にコンバートできずvllmで動かすときもちょっと魔改造したvllmが必要になるという。 最近ローカルづいてる吾輩としてはできればMLXで動かしたいのだがMLXがまだTanukiに対応してない(し、そもそも何をすればTanuki対応にできるのかよくわからない)ので、とりあえず「非推奨」とされてはいるものの、Macでもギリギリ動きそうなGGUF版を動かしてみた。 from llama_cpp import Llama filename = "Tanuki-8B-dpo-v1.
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く