並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 139件

新着順 人気順

leanの検索結果1 - 40 件 / 139件

タグ検索の該当結果が少ないため、タイトル検索結果を表示しています。

leanに関するエントリは139件あります。 エンジニア仕事 などが関連タグです。 人気エントリには 『Pythonで仕事をする人のための書籍まとめ2021 - 学習, 業務効率化, アプリ開発からデータサイエンスまで - Lean Baseball』などがあります。
  • Pythonで仕事をする人のための書籍まとめ2021 - 学習, 業務効率化, アプリ開発からデータサイエンスまで - Lean Baseball

    2020年も多くの素晴らしい技術書がたくさん出ました. その中でも(昨今のトレンド・流行りも手伝ってか)Python本の多さ・充実度合いは目立つものがあります. (このエントリーを執筆した12/19時点で)Amazonの本カテゴリで「Python」と検索すると1,000件以上出てきます*1. これだと目的の本にたどり着くだけで疲れそうです. このエントリーでは, 主にPythonを学びたい・現在使っている方 手元の業務を効率化したり, RPAっぽいことをやりたい方 エンジニア・データサイエンティストとして業務や趣味・個人開発をされている方 を対象に, 今そして来年2021年に読んでおきたいPython関連書籍(と抑えておきたいサービス) をエンジニアでありデータサイエンティストである私独自の視点で紹介します*2. なおこのエントリーはこのブログで例年執筆している「Python本まとめ」の2

      Pythonで仕事をする人のための書籍まとめ2021 - 学習, 業務効率化, アプリ開発からデータサイエンスまで - Lean Baseball
    • 2023年にエンジニアな私がマネジメントに目覚めてから読んでよかった3冊 - Lean Baseball

      タイトルそのままのエントリーです. 気がつけば現職含めて「エンジニアのマネジメント」を行う職種を6年ちょいやらせてもらっています. マネジメントをする・しないを含めてキャリアパスどうする? マネジメントをやるとして何を教科書にしたら? 今どきの開発スタンス・マネジメントってどうしたら? みたいな悩みや迷い(&やっぱコードを書くエンジニアの仕事良さそうという脱マネジメントの検討*1)は常にありますが, 今年はそれに応えてくれる良著3冊に出会いました. スタッフエンジニア エンジニアのためのマネジメント入門 人が増えても速くならない 以上の3冊です. この3冊です(結論) スタッフエンジニア マネジメントを超えるリーダーシップ 作者:Will Larson日経BPAmazon エンジニアのためのマネジメント入門 作者:佐藤 大典技術評論社Amazon 人が増えても速くならない ~変化を抱擁せよ

        2023年にエンジニアな私がマネジメントに目覚めてから読んでよかった3冊 - Lean Baseball
      • エンジニアの辛い仕事をいい感じにする技術 - コンサルの仕事術・思想から学べること - Lean Baseball

        エンジニアの辛い仕事を消す本かも(多分) 2014年の秋にリクルートに転職してから何社か経て今も自社サービスのエンジニアとして働いてるマンです. リクルートに入ったとき, そしてその後の転職先*1などなどで, 社内外問わずのコミュニケーションの辛さ. 社内調整, 顧客折衝etc... コードじゃなくて, ドキュメントを書く仕事の辛さ. プレゼンテーション・説明そのもの. 技術わかんない上司に説明(ry*2 みたいな経験をたくさんしました&これはエンジニアをやってたら誰でも直面する事態かなと思います, 自社サービス企業だろうがSIer/受託開発の企業だろうが. そもそも, 昔の調査にもそんな雰囲気ありますし, おそらく今もさほど変わらないでしょう. ...ということを, 前回のブログの執筆中および反響で改めて思い*3, そういえば自分はこの辺, 元々ITコンサルタント*4だった時に学んだこと

          エンジニアの辛い仕事をいい感じにする技術 - コンサルの仕事術・思想から学べること - Lean Baseball
        • 「世界一流エンジニアの思考法」は強いエンジニアの習慣がいい感じに言語化されていてよかった件 - Lean Baseball

          界隈で話題になっている(と私は認識している)「世界一流エンジニアの思考法」を早速読んでめちゃくちゃ良かった, とにかく人に勧めたいぞ! という現役エンジニア(私)による書籍の感想エントリーとなります. 話題の本めちゃ良かったです. このブログを書く数日前にkindleで買って読む→めちゃいいやん!→紙版も買う←今ここ ってぐらいすごく良かったです*1. 世界一流エンジニアの思考法 (文春e-book) 作者:牛尾 剛文藝春秋Amazon 何が良かったか一言で言うと, 「強いエンジニアの習慣がここまでいい感じに言語化されている!!!」 という所ですね, 割と余すところなく詰まっていると思いますし, 一つ一つのTipsは再現性もあると思います(真似できるかどうかは別として真似は可能*2). そんな「世界一流エンジニアの思考法」の感想を手短に書きます, 気になる方はお付き合いください. TL;D

            「世界一流エンジニアの思考法」は強いエンジニアの習慣がいい感じに言語化されていてよかった件 - Lean Baseball
          • 今いちばんオススメしたいPython本 2022 - 初心者からプロまで仕事に活かせる3冊 + α - Lean Baseball

            2021年も数多くのプログラミングやPythonを扱った素晴らしい書籍とたくさん出会いました. 私はリアルの本屋さんに行くのがとても好きで(ECの本屋さんも好きですが), 技術書のコーナーには必ずと言っていいほど足を運ぶのですが, 年々「Python」というラベルが付いた棚の領域が広がっている気がします. プログラミング初心者でPythonからやりたいけど何から読めばいいのか🤔 実務に役立つような参考書籍ってどうやってみつければいいかわからない😇 よりビジネスに役立つ, 実践的な事例をしりたい💪🏻 という, 割とありそうなニーズにお応えすべく, 2022年いや, 今この瞬間に読んでおきたい・抑えておきたいPython関連書籍をまとめました! 2011年頃からPythonを使って仕事をし始め, 今もエンジニアリングからコンサルティング, マネジメントをやっている私独自の視点で, オス

              今いちばんオススメしたいPython本 2022 - 初心者からプロまで仕事に活かせる3冊 + α - Lean Baseball
            • 自分プロジェクトを挫折せず続ける技術 - 個人開発をはじめよう! - Lean Baseball

              職業としてエンジニアをやりたい・やってるけど(サーバーサイド→アプリエンジニア, インフラ→機械学習エンジニア的な)ジョブチェンジをしたいという方は結構いらっしゃると思います(かつての私もそんな人達の一人でした*1). エンジニアをやりたい, 別の領域のエンジニアにジョブチェンジしたいというときに, 仕事終わった後, 週末などに個人学習をする 勉強会やイベントに参加したりコミュニティーのメンバーになって仲間を増やす 一念発起?して自分でWebサイト・サービスやiOS/Androidアプリを作ってリリースする といった, 「自分プロジェクト」言い換えると「個人開発」をすると思いますが, これって中々続かない事多くないですか? 少なくとも私は上手く行かなかった時期がありましたし, 今は上手く行ってるものの, たまにこの手の相談を受けます. そんな中, 奇しくも今年の4月に「個人開発をはじめよう

                自分プロジェクトを挫折せず続ける技術 - 個人開発をはじめよう! - Lean Baseball
              • エンジニアとして30代までにやってて良かった・やれば良かった事を自分のキャリアから振り返ってみた. - Lean Baseball

                最初に言っておきます. このエントリーは「いい本を読んだついでに自分のキャリアを振り返ってオススメを残す」という長文ブログです. 適当に読み流してもいいですし, 心の琴線に触れる事があれば最後までお付き合い頂けると幸いです. さて, 4月の末と言えば, GWが近づいてくると共に色々考えることがあります. 例えば社会人23年目の私は今年, GWの予定(決まっていない場合に限る) 「こどもの日」にしてあげられること キャリアの振り返りと数年先のキャリアプラン検討 この3つについて真剣に考えています. 今年でいうとGW予定(1.)は90%程度計画済み, こどもの日(2.)は甥っ子に渡すお小遣いを検討...までは決まってるのですが, 最後の(3.)はというと, GW明けって転職とか将来キャリアを考える機会になりがちじゃん?そういえば自分のキャリア(ry ...という感じで, GWは(本人が意識する

                  エンジニアとして30代までにやってて良かった・やれば良かった事を自分のキャリアから振り返ってみた. - Lean Baseball
                • データエンジニアの私が機械学習・データサイエンスでオススメしたいスキルマップと本まとめ - 2020年版 - Lean Baseball

                  要約すると, データサイエンス・機械学習周りでよく聞かれること&回答を言語化しました. 「データサイエンティストやりたい」「機械学習エンジニアになりたい」というキャリア志望を持つ方は多いと思います. 私の周りでも, 公私ともにそんな志望者の相談を聞いたり, (主にインターンの学生さんですが)一緒に仕事をしたりする機会もメッチャ多いです. 「ビジネスサイド強いマン」「サーバーサイドエンジニア」という視点からデータエンジニア兼データサイエンティストな自分が, そんな彼ら彼女らにオススメしている, データサイエンティストを目指すためのスキルマップ 各領域のスキルアップを実現するためにオススメしたい書籍 を紹介したいと思います. なお, 昨年も同様のエントリーを書いておりそのUpgrade版となります. shinyorke.hatenablog.com このエントリーの対象読者 データサイエンスに

                    データエンジニアの私が機械学習・データサイエンスでオススメしたいスキルマップと本まとめ - 2020年版 - Lean Baseball
                  • データ基盤にありがちな「何を使って作ればよいか?」という問いに対する処方箋を用意してみました. - Lean Baseball

                    ちょっと昔まではデータ基盤の管理人・アーキテクト, 現在は思いっきりクラウドアーキを扱うコンサルタントになったマンです. 私自身の経験・スキル・このブログに書いているコンテンツの関係で, 「データ基盤って何を使って作ればいいの?」的なHow(もしくはWhere)の相談. 「Googleのビッグクエリーってやつがいいと聞いたけど何ができるの?」的な個別のサービスに対するご相談. 「ぶっちゃけおいくらかかりますか💸」というHow much?な話. 有り難くもこのようなお話をよくお受けしています. が, (仕事以外の営みにおける)個人としては毎度同じ話をするのはまあまあ疲れるので, データ基盤にありがちな「何を使って作ればよいか?」という問いに対する処方箋 というテーマで, クラウド上でデータ基盤を構築する際のサービスの選び方 (データ基盤に限らず)クラウド料金の基本的な考え方 をGoogle

                      データ基盤にありがちな「何を使って作ればよいか?」という問いに対する処方箋を用意してみました. - Lean Baseball
                    • エンジニアな転職に役立った書籍と考え方そして実際やったこと. - Lean Baseball

                      いきなりのお知らせですが, 私shinyorkeは年内で現職(某大手外資系ITコンサル企業*1)を退職します(本日12/13が最終出社でした)&来年から再びプロダクトを取り扱うベンチャー企業*2でエンジニアとして働くことになりました(まだ予定ですが)&その転職活動から爆誕したコンテンツがこの記事です. 現職の皆様, 本当にお世話になりました&次の働き先はもうすぐ決まる見込みです*3. 退職と転職の話は後日別のブログこちらのブログで語ることにしますが, 約3年ぶりの転職活動(40代になってから二回目)は本当に苦労しました. エンジニアの転職プロセスは色々ありますが, 通常の面接・選考(過去経歴, いくつかの質問の中で能力・カルチャーがフィットするか) 技術選考(プログラミングテスト, 応用的な技術課題の作成・提出, レビュー形式の技術面談など) 大雑把にこの2つに分かれるかと思います*4が,

                        エンジニアな転職に役立った書籍と考え方そして実際やったこと. - Lean Baseball
                      • 2024年に読んだほうがいいエンジニアな書籍10冊+α - CloudとSREそしてキャリア本 - Lean Baseball

                        Google Cloud Partner Top Engineer 2024を頂いた者です. 仕事はエンジニア系のコンサルとSRE, 趣味(と前職以前の仕事)で機械学習や生成AI*1をやっとります. この記事は当ブログの名物かつ人気シリーズである, 主に技術書を中心としたオススメ書籍(元々はPython本メイン)の紹介エントリーです. ※去年の記事はこちら. 本年のこのエントリーは, 2024年の推し本4冊 CloudおよびSREな4冊 いい感じな技術書2冊 この三本立て(+私の完全なる趣味チョイスで数冊)でご紹介できればと思います. というわけで, 本年のラインナップは以下の通りです. この記事の著者 2024年の推し技術書10冊 特に推したい4冊 クラウドストラテジー 世界一流エンジニアの思考法 仕事に役立つ新・必修科目「情報Ⅰ」 キャリアづくりの教科書 CloudおよびSREな4冊

                          2024年に読んだほうがいいエンジニアな書籍10冊+α - CloudとSREそしてキャリア本 - Lean Baseball
                        • 44歳独身ソフトウェアエンジニア、家を買う。 - Lean Baseball

                          本ブログ「Lean Baseball」開設10周年企画*1かつ, ちょっとした近況報告となります. お世話になっている皆様へ(TL;DR) 東京(の西側*2)で家を買いました, 引っ越しました. この決断とオチ, 未来に至るまで, 自分のキャリアとアウトプット, そしてこのブログは不可欠でした. 現職から前職以前の同僚(元同僚), アウトプットや色んなことを応援してくださった皆様そして何よりも家族と友人に心から感謝御礼申し上げます🏚 お祝いはこちらからお待ちしています. 44歳独身ソフトウェアエンジニア、家を買う。 作業環境(まだ作ってる最中) こちらが購入したお家...で最初に作った作業環境です💻*3 (人生の一般的なアレとして)「家を買う(家の主となる)」事は一つの大切なライフステージのイベントなので, お世話になっている皆様へ(TL;DR) 44歳独身ソフトウェアエンジニア、家を

                            44歳独身ソフトウェアエンジニア、家を買う。 - Lean Baseball
                          • エンジニアのための「ミーティング・メモ」入門 - クラウドサービスとVSCodeを添えて - Lean Baseball

                            10月からコンサルタントに出戻りしたエンジニアです. 入社前に想定していた以上に毎日が楽しいです*1. それはさておき, つい先日に前職の同僚であるエンジニアリングマネージャーの@jazzsasoriさんとサシ飲みしたのですが, 「エンジニアリングマネージャーとかテックリードとかになると, 議事録(的なメモ)」を取る力無いと辛いよね, 案外言及されてないけど という話題になりました, 酔っ払ってあんまり覚えてないけど🍻*2 で, どれぐらいの方がこの話題に興味あるのかな?と気になり, 昨夜、久々に前職エンジニアリングマネージャー氏と飲んでて、何かの拍子に「エンジニアがビジネスな力をつける訓練の一つとして議事録書くのがいいんだよね」的な話をしたのですが 「エンジニアのための議事録書き入門」とかいうブログ記事って需要あると思いますか皆さん🤔— Shinichi Nakagawa / 中川

                              エンジニアのための「ミーティング・メモ」入門 - クラウドサービスとVSCodeを添えて - Lean Baseball
                            • 『LeanとDevOpsの科学』をきちんと解読する 〜Four Keys だけじゃ絶対もったいなくなる話〜

                              スクラムフェス福岡2024での講演資料です。 --- 皆さん、職場でFour Keysを導入していますか? Yesと答えた皆さん、『LeanとDevOpsの科学』は読みましたか? あくまで僕の周囲のみの観測で語るのですが、Four Keysを職場で導入しているという人はとても多いので…

                                『LeanとDevOpsの科学』をきちんと解読する 〜Four Keys だけじゃ絶対もったいなくなる話〜
                              • 「AWSクラウド設計完全ガイド」はクラウドを扱うエンジニアにとって必読書になりそう説. - Lean Baseball

                                「AWSクラウド設計完全ガイド」早速読みました&オススメかつ一部のエンジニアは必読書にしてもいいと思いました! ...という, 現役のエンジニア・システムアーキテクトおよびSREである私の読書感想文エントリーとなります. 良い本でした, B5サイズでちょっと大きい. 私の前職の同僚たち(それも社内で本当に強い連中*1)の共著で最初から期待しか無かったのですが, その期待値をめっちゃ超えてきた(ただし読み手として注意も必要, 後述します)のですごく良かった*2です, 紙もですがKindle(電子書籍)もすぐ買いました. AWSクラウド設計完全ガイド 作者:アクセンチュア 戸賀 慶/福垣内 孝造/竹内 誠一/浪谷 浩一/澤田 拓也/ 崎原 晴香/浅輪 和哉/村田 亜弥日経BPAmazon 何が良かったか一言で言うと, 「タイトル通り『AWSの設計ガイド』として成立しているかつ, Google

                                  「AWSクラウド設計完全ガイド」はクラウドを扱うエンジニアにとって必読書になりそう説. - Lean Baseball
                                • DevOpsDays Tokyo2022 ファクトから始める改善アプローチ 〜「LeanとDevOpsの科学」を実践して〜 #DevOpsDaysTokyo #DevOps #4keys #cloud #cicd #Accelerate #LeanとDevOpsの科学

                                  DevOpsDays Tokyo2022 ファクトから始める改善アプローチ 〜「LeanとDevOpsの科学」を実践して〜 #DevOpsDaysTokyo #DevOps #4keys #cloud #cicd #Accelerate #LeanとDevOpsの科学

                                    DevOpsDays Tokyo2022 ファクトから始める改善アプローチ 〜「LeanとDevOpsの科学」を実践して〜 #DevOpsDaysTokyo #DevOps #4keys #cloud #cicd #Accelerate #LeanとDevOpsの科学
                                  • 個人開発のプロダクトにおけるクラウド料金のはなし - GCPの年間コストをランチ一回分に抑えた話 - Lean Baseball

                                    GCP(Google Cloud Platform)を個人開発プロダクトの中心として使っているマンです. AWSやAzureなど他のクラウドサービスもそうですが, クラウドサービスを自分の財布から使ってる時ってめちゃくちゃドキドキしませんか?特にお金の話💰 gigazine.net 例えばこういう記事が流れてくると, 勉強のつもりでアカウント作ったけどどうしよう🤔 仕事で使ってるけど怖くなってきた😫 などなど, 色々と不安を覚えると思います, 自分も昔はそうでした, クレカの情報入れるのこわいお💳的な. ですが安心してください. 仕組みを正しく理解して使えば個人レベルだとメチャクチャ安く収まります. このエントリーでは, 私が今年(2020年)に使ったGCPの料金をチラ見せしつつ, 目的に合わせたクラウドサービスの使い方をTipsとして紹介し, GCP(に限らず他のクラウドサービス

                                      個人開発のプロダクトにおけるクラウド料金のはなし - GCPの年間コストをランチ一回分に抑えた話 - Lean Baseball
                                    • ソフトウェアエンジニアとしての5年先を見据えた来年と今年の話 - 50歳に向けて. - Lean Baseball

                                      先日行った鹿児島が最高でした 今年(2024年)の振り返りと, 来年(2025年), pyspa Advent Calendar 2024最終日の記事(昨日は@shibu_jpさんでした)かつ, 先日のエントリーの続きの話となります*1. 改めまして, 当ブログ「Lean Baseball」の中の人でshinyorke(しんよーく)と申します. このエントリーでは, 来年 過去(5年前) 今年 未来(5年後, 50歳に向けて) ぐらいにフォーカスした自分の話を書きます. TL;DR 来年(2025年)の話 次の仕事 個人活動 プライベート 過去の話(少しだけ) 40代前半戦の総括 ITコンサル生活の振り返り 今年(2024年)の話 とても長かった転職活動 44歳独身ソフトウェアエンジニア、家を買う 執筆プロジェクトが頓挫 結び - 50歳に向けて TL;DR 2025年1月から株式会社La

                                        ソフトウェアエンジニアとしての5年先を見据えた来年と今年の話 - 50歳に向けて. - Lean Baseball
                                      • 自分でシュッとデータ分析をできる人になろう - 「データ分析人材になる。」から学んだこと - Lean Baseball

                                        新年あけましておめでとうございます🎍 年末年始は色々と手を動かしつつ*1, 積ん読を消化していたのですが, 昨年最後の読書🍺 特にこの本にオッってなりまして読み終わる寸前には, これもうすぐ読み終わるのですが、なぜ積ん読にしてたワイは🤔 ってぐらい名著でした📖 https://t.co/RgTILDGc7r— Shinichi Nakagawa (@shinyorke) 2021年1月3日 ...という感想が出る程度にこちらの書籍に興奮しました. データ分析人材になる。 目指すは「ビジネストランスレーター」 作者:木田 浩理,伊藤 豪,高階 勇人,山田 紘史発売日: 2020/10/15メディア: Kindle版 データを使って仕事をする人は(データサイエンティストに限らず)サラッと読んだほうがええやぞ! というぐらい良い本だったという話を2021年最初のブログとして書きたいと思い

                                          自分でシュッとデータ分析をできる人になろう - 「データ分析人材になる。」から学んだこと - Lean Baseball
                                        • 仕事も個人開発も周りがドン引きするまでガチでエンジニアをやっていきましょ - デブサミ2023登壇報告 - Lean Baseball

                                          昨日(2/10)の話ですが, 2020年以来3年ぶりにデブサミに参加・登壇させていただきました(前回の登壇報告はこちら). 数あるセッションの中から私のトークにお越し頂き, 誠にありがとうございました! また, 発表練習の機会を頂き, フィードバック・応援を頂いた所属企業*1のチームメイトおよび #pyhack(Python mini Hack-a-thon)の皆様, そして企画から本番まで伴走して頂いたデブサミの運営・スタッフの方々にもこの場を借りて改めて御礼申し上げます🙏 登壇の備忘録を兼ねて, このエントリーでは以下のラインナップを元に, 発表の振り返りと今後の話なんぞ書きたいと思います. TL;DR 登壇した理由と背景 どういう話だったか 参加者へのお土産 結び TL;DR 技術力向上, キャリア形成そして自分の趣味という観点で今後も周りが「ドン引き」する程度にエンジニアリングを

                                            仕事も個人開発も周りがドン引きするまでガチでエンジニアをやっていきましょ - デブサミ2023登壇報告 - Lean Baseball
                                          • エンジニアとして機械学習に携わった際にやっててよかった3つのこと - Lean Baseball

                                            現職のコンサルっぽい仕事・インフラアーキなエンジニアな仕事も大好きですが, やっぱデータを見ると興奮するぐらいにデータ好きな人です. startpython.connpass.com 本日(2023/1/19), ありがたいご縁がありまして, 「機械学習エンジニアが目指すキャリアパスとその実話」というお話をさせていただきました. 参加者の方々, ご清聴ありがとうございました&参加されていない方も気になるポイントあればぜひ御覧ください. 1/19の #stapy で「機械学習エンジニアが目指すキャリアパスとその実話」なるトークをすることになりました, 自画自賛ですが思ったよりいい内容に仕上がった気がします, 機械学習とかデータサイエンティストとかのキャリアでお悩みの方に届くと嬉しいです, 来てねhttps://t.co/KHxAXYY5mr pic.twitter.com/eguUyEnfb

                                              エンジニアとして機械学習に携わった際にやっててよかった3つのこと - Lean Baseball
                                            • 「入門 継続的デリバリー」は継続的デリバリーを学ぶのに最適な教科書だった. - Lean Baseball

                                              最近読んだ「入門 継続的デリバリー」がとても良かったので紹介しますね, というエントリーです. 入門継続的デリバリー良かったです. 「継続的デリバリー(Continuous Delivery)」とか「DevOps」ってどこから学ぶかわからんな!? というのは割とあるあるだと思っています, そもそもめちゃくちゃ難しい話なので(ちゃんと学ぼうとすると). そんな中, 「入門 継続的デリバリー」がよく説明できてて良かったので感想と関連する書籍を紹介できればと思っています. TL;DR 入門 継続的デリバリー 我々はなぜCDをするのか? 具体的なプラクティス 入門後に読むべき良著 Kubernetes CI/CDパイプラインの実装 継続的デリバリー チームトポロジー 結び - 我思うCDとDevOps TL;DR 「入門 継続的デリバリー」は継続的デリバリーの大切さと概念, 手法を現実にありそうな

                                                「入門 継続的デリバリー」は継続的デリバリーを学ぶのに最適な教科書だった. - Lean Baseball
                                              • 「いい感じに成長する」エンジニアのキャリアと学び方 - 2023年オススメPython本を添えて - Lean Baseball

                                                このブログおよび, 登壇・アウトプットはゴリッゴリのエンジニア, 本職はコンサル企業のマネージャーとしてクラウドエンジニアリングのコンサルをやっている者です*1. この記事は, 当ブログの名物である, Pythonのオススメ書籍(と関連する技術書)の紹介エントリーです! ※去年の記事はこちら. 本年のエントリーでは「今最もいい感じなPython本」の紹介に加えて, キャリアごとに読むべき技術書(と学び方)の選び方 この年末に読んで欲しい技術書(Python本とそれ以外) 「エンジニアのキャリア形成的に期待値の考え方大事だよ」という話 この三本立てでご紹介できればと思います. というわけで, 本年のラインナップは以下の通りです. 要約すると キャリアレベルを考える オススメ技術書籍2023 ジュニア🔰 メンバー マネジメント ボード 結び - キャリアごとの期待値 【番外編】私の推し書籍2

                                                  「いい感じに成長する」エンジニアのキャリアと学び方 - 2023年オススメPython本を添えて - Lean Baseball
                                                • 「Pythonによる医療データ分析入門」は分析100本ノック後に必読な探索的データサイエンス本だった - Lean Baseball

                                                  今年読んだデータサイエンスおよびPython本の中でも最良の一冊でした. ホントに待ち望んでいた一冊でした. 実は密かに楽しみにしてた(待ち望んでいた)*1, 「Pythonによる医療データ分析入門」, 一通り読ませていただきましたので, Pythonによる医療データ分析入門の感想 分析100本ノック後にやると良いこと 探索的データサイエンスはデータサイエンスに関わる人すべてに関係する準備運動であり入り口であること 的な話を綴りたいと思います. なお, 最初に断っておくと, 新型コロナウイルス含む, 感染症とか流行病の話は一切触れておりません! このエントリーは純粋に「Pythonを使ったデータサイエンス」を志向した方向けのエントリーとなります. 新型コロナウイルスだの感染症関連だのを期待されている・そう思った方はぜひ他のページなどを見ていただけると幸いです. このエントリーのダイジェスト

                                                    「Pythonによる医療データ分析入門」は分析100本ノック後に必読な探索的データサイエンス本だった - Lean Baseball
                                                  • リーンコーヒー(Lean Coffee)のすすめ - SMARTCAMP Engineer Blog

                                                    スマートキャンプのプロダクトマネージャーの郷田です。 皆さんは普段の業務で、以下のように感じる場面はありませんか? - 「同じチームで働くあの人と、いつもなんだか認識がずれてるかもと感じる」 - 「一通り会議はやったものの、なんだかいまいち話しきれてないようなモヤモヤがある」 - 「あの人にはもっと注力してもらいたいことがあるのに、なかなかそこまでやってもらえない」 こういった場面に遭遇したときには、リーンコーヒーを実施されることをおすすめします! この記事では、チームのMTGで活用してみていただきたい「リーンコーヒー」を紹介します。 リーンコーヒー(Lean Coffee)とは? リーンコーヒーの進め方 準備するもの その1:トピック出しと優先順位の決定(5分~15分) その2:トピックのディスカッション(10分〜45分) 初めてのリーンコーヒーでのハマりどころ 継続するかの判断をせずに

                                                      リーンコーヒー(Lean Coffee)のすすめ - SMARTCAMP Engineer Blog
                                                    • 『LeanとDevOpsの科学』まとめ - Qiita

                                                      以前からAmazonの欲しいものリストにはあったのですが、なかなか読みたい気持ちにならずリストを整理するときに削除しちゃっていたのですが 2月ぐらいからTwitterでこの本についての言及が増えたし、ちょうどそのころ開発生産性とは何か、について一考していたこともあったので、読んでみました。 LeanとDevOpsの科学 一旦さらっと読んで、面白いなー、やっぱデリバリ大事だなーと思って読了したんですが 先日texta.fmでこの本のことが取り上げられており、あー、そんな読み方があったかーと思って改めてちゃんと読み直してみました。 構成 第一部: 調査結果から見えてきたもの(パフォーマンスを向上させるケイパビリティとは何かの話。特にデリバリを中心に多面的に検討している) 第二部: 調査・分析方法 第三部: 改善努力の実際(いろんな会社の取り組みの事例) 読み方 常に付録Aの図A.1を開いてお

                                                        『LeanとDevOpsの科学』まとめ - Qiita
                                                      • 「仕事ではじめる機械学習 第2版」を読んで思った「ソフトウェアエンジニアとデータサイエンティスト, ML Ops」のこと - Lean Baseball

                                                        このエントリーのテーマです このエントリーは, 「仕事ではじめる機械学習 第2版」出版お祝いのエントリーとなります. 仕事ではじめる機械学習 第2版 作者:有賀 康顕,中山 心太,西林 孝オライリージャパンAmazon 私自身, 第1版登場の2018年頃*1から「機械学習エンジニア」「企画・提案のフェーズから機械学習プロジェクトを回すマン」など, まさに機械学習を仕事とするロール・立ち位置で働いたり個人開発をしたりしていた身として, 色んな場面で参考にしていた書籍の待望の第2版登場で嬉しいです. 待ちに待った仕事ではじめる機械学習第2版、戴きました🙏 週末読んで感想書くぞ📕 pic.twitter.com/66mcTzxja5— Shinichi Nakagawa / 中川 伸一 / Senior Engineer (@shinyorke) 2021年4月15日 縁あって著者の皆様およ

                                                          「仕事ではじめる機械学習 第2版」を読んで思った「ソフトウェアエンジニアとデータサイエンティスト, ML Ops」のこと - Lean Baseball
                                                        • 『Lean と DevOps の科学』って教養ないと理解できないじゃん!っていう話 - Qiita

                                                          今や生産性の可視化・評価指標といえば本書籍で紹介された『FourKeys』ですね。ちまたでは、絶対視されている様な表現・評価がされている記述をたまに見かけます。ですが、本当にそうでしょうか?ある方が調べたところ、FourKeys を使用している人のうち『Lean と DevOps の科学』を読んだことがない人は9割近くもいたそうです。 本記事では、FourKeys を有効に活用するために知っておくべき・理解しておくべき事柄を幅広い分野でまとめました。生産性を向上し、仕事の成果の質を上げたいと努力するエンジニアの方々が、次の日から使える情報を書けたのではないかと思います。FourKeys だけを見て生産性を上げるという行動は手段の目的化につながりかねません。Fourkeys の背景にある思想を知ることで、FourKeys を真に活用するきっかけになればと思います。 目次 初めに GW中に読も

                                                            『Lean と DevOps の科学』って教養ないと理解できないじゃん!っていう話 - Qiita
                                                          • 40代後半戦のキャリアとしてSREを選んだ理由と学び直していること. - Lean Baseball

                                                            自社プロダクトのSRE意外と初めてなので学び直してるの巻 先月の真ん中ぐらいから新天地のLayerX AI・LLM事業部*1でSRE(Site Reliability Engineering)を主とするエンジニアとして新たなキャリアを歩み始めました(報告したブログはこちら). 「野球エンジニアやってた人」「バックエンドからインフラから機械学習まで割となんでもやってるマン」が大筋な自分のPublic Image(=多くの方の認知)であり, 自分から見てもそれは事実かなぁー, なのですが. 「何故SREというキャリアを選んだの?」っていう話はあまりしていない気がしているので, それを語ろう!というのがこのエントリーの主旨となります. TL;DR SREを選んだ理由 IC or EMなら何でも良かった転職活動 SREポジションに対する需要と難しさ やりたいことはSREだった SREとして学び直し

                                                              40代後半戦のキャリアとしてSREを選んだ理由と学び直していること. - Lean Baseball
                                                            • Jupyterで計算・分析した何かをアプリっぽくプレゼンするまで - 33分4秒ではじめるStreamlit「雑」入門 - Lean Baseball

                                                              サムネイルで出してる内容がそのままこのエントリーのテーマです. Pythonアドベントカレンダー2020の9日目です. JX通信社のシニアエンジニアで, 趣味で野球*1とヘルスケア*2なデータを分析してるマンの@shinyorkeと申します. ちょっとしたデータサイエンスでもガチのR&Dでも何でもいいのですが, プレゼンするためのスライド作るとか, デモのアプリを作るのって相当ダルくないっすか? いやまあ大事な仕事なので不可避かつちゃんとやろうぜっていうのは事実*3なのですが, 手を抜くところは手を抜くべきだなというのが持論としてありますし, 「怠惰・傲慢・短気」というプログラマーの三大美徳からするとプレゼンの準備は最も「怠惰」であるべきとまで僕は思っています. そんな中, 今年はStreamlitという, 「データを見せるアプリを雑に作ろうぜ」っていうライブラリがめっちゃ流行りました(っ

                                                                Jupyterで計算・分析した何かをアプリっぽくプレゼンするまで - 33分4秒ではじめるStreamlit「雑」入門 - Lean Baseball
                                                              • 「実践Django」から学ぶ「プロとして学ぶ・実践すべきWebアプリケーション開発」のこと - Lean Baseball

                                                                PythonでWebアプリケーションをよく作るマンです. 来週(7/19)に発売となる, 「実践Django Pythonによる本格Webアプリケーション開発」の書籍レビューに参加させていただきかつ, 執筆者の@c_bata_さん, 出版元の翔泳社様のご厚意により一冊いただきました. ひと足先に読ませていただきました(感謝) 実践Django Pythonによる本格Webアプリケーション開発 (Programmer’s SELECTION) 作者:芝田 将翔泳社Amazon 芝田さん, 翔泳社の皆様ありがとうございました🙇‍♂️ 原稿の査読・レビューで読ませてもらったり(コメントさせてもらったり), こうして届いた初版を改めて読んで, Djangoをやる方はもちろん, Djangoを抜きにしてもWebアプリケーション開発をされる方にめちゃくちゃオススメしたい! と思いました, レビューさ

                                                                  「実践Django」から学ぶ「プロとして学ぶ・実践すべきWebアプリケーション開発」のこと - Lean Baseball
                                                                • 「PythonユーザーのためのJupyter実践入門」はPythonとデータサイエンスをする人の入り口だ - Lean Baseball

                                                                  待望のJupyter本, 改訂版来ました! Pythonでデータサイエンスとエンジニアリングするマンとしてかなり待望していた「PythonユーザのためのJupyter[実践]入門 改訂版」がついに来ました.*1 改訂版 Pythonユーザのための Jupyter[実践]入門 作者:池内 孝啓,片柳 薫子,@driller発売日: 2020/08/24メディア: 単行本(ソフトカバー) ひと足先に読ませていただいたので, 「PythonユーザのためのJupyter[実践]入門 改訂版」はPythonでデータサイエンスする人にとっての入り口でおすすめの本である Pythonでデータサイエンスをやるなら, 「Pythonと慣れ親しむ」「機械学習に慣れる」「実践する」の目的に合わせて学習・実践したり本を読んだほうがいいよ という話をこのエントリーではまとめていこうと思います. なおこのエントリーは

                                                                    「PythonユーザーのためのJupyter実践入門」はPythonとデータサイエンスをする人の入り口だ - Lean Baseball
                                                                  • エンジニアからデータサイエンティストへのキャリアチェンジのお供に「Pythonではじめる数理最適化」は良い教科書になるかもしれない - Lean Baseball

                                                                    良い本良い魚良いお酒でした 秋も深まり, 緊急事態宣言が解除された今日このごろ, お酒を片手に読書がだいぶ捗るようになりました📖 酒と魚の話はさておき*1, 長いこと友人かつRetty時代の元同僚である岩永さん(とその仲間たち)*2が, 「Pythonではじめる数理最適化」なる書籍を出しました*3. Pythonではじめる数理最適化 ―ケーススタディでモデリングのスキルを身につけよう― 作者:岩永二郎,石原響太,西村直樹,田中一樹オーム社Amazon エンジニアな自分が読んだ感想として, 数理最適化でモデリングをする人だけでなく, エンジニアからデータサイエンティストへのキャリアチェンジを考えている人も必読なのでは? と思ったので, メモ代わりに感想(とちょっとしたコンテンツ)を残したいと思います. TL;DR 現実の課題・問題(主に仕事)をデータサイエンティストとして解きたい方の参考書

                                                                      エンジニアからデータサイエンティストへのキャリアチェンジのお供に「Pythonではじめる数理最適化」は良い教科書になるかもしれない - Lean Baseball
                                                                    • 「LeanとDevOpsの科学」を実際にチームに適用した際の工夫 - talk at DevOpsDays Tokyo 2022

                                                                      「LeanとDevOpsの科学」を実際にチームに適用した際の工夫 - talk at DevOpsDays Tokyo 2022 こんにちは、株式会社ビズリーチでプロセス改善活動をしている賀茂といいます。 少し前になりますが、2022年4月21日にDevOpsDays Tokyo 2022にて発表をしたので、発表内容の補足と発表後に会場の方からもらった質問について答えたいと思います。 発表内容について 今回は『ファクトから始める改善アプローチ 〜「LeanとDevOpsの科学」を実践して〜 』と題して「LeanとDevOpsの科学」という書籍の実践事例を発表してきました。 「LeanとDevOpsの科学」について 前提として今回の取り組みは「LeanとDevOpsの科学」という本を参考にしています。 「LeanとDevOpsの科学」では開発組織のパフォーマンスを測る指標(Four keys

                                                                        「LeanとDevOpsの科学」を実際にチームに適用した際の工夫 - talk at DevOpsDays Tokyo 2022
                                                                      • PythonとGoogle Cloudを使って年間70万球の野球データをいい感じに可視化・分析するダッシュボードを作った - Lean Baseball

                                                                        日本で言えば同じ学年のレジェンド, アルバート・プホルスが通算700号本塁打を打って驚いている人です. ここ最近, (休んでいる間のリハビリがてら*1)PyCon JP 2022の準備および, 来年以降のMLBを楽しく見るために野球データ基盤(ちなみにメジャーリーグです)を作っていたのですが, それがいい感じに完成しました. アプリとデータ基盤をどのように作ったのか どのような処理, どのようなユースケースで動かしているのか これらをどのようなアーキテクチャで実現したのか 以上の内容をこのエントリーに書き残したいと思います. なおこのエントリーは, PyCon JP 2022のトーク「Python使いのためのスポーツデータ解析のきほん - PySparkとメジャーリーグデータを添えて(2022/10/15 16:00-16:30)」の予告編でもあります. なので, 後日のトークをお楽しみに

                                                                          PythonとGoogle Cloudを使って年間70万球の野球データをいい感じに可視化・分析するダッシュボードを作った - Lean Baseball
                                                                        • TerraformとGitHub Actionsで複数のCloud RunをまとめてDevOpsした結果, 開発者体験がいい感じになった話. - Lean Baseball

                                                                          ざっくり言うと「TerraformとGitHub ActionsでGoogle Cloudなマイクロサービスを丸っとDeployする」という話です. Infrastructure as Code(IaC)は個人開発(趣味開発)でもやっておけ 開発〜テスト〜デプロイまで一貫性を持たせるCI/CDを設計しよう 個人開発(もしくは小規模システム)でどこまでIaCとCI/CDを作り込むかはあなた次第 なお, それなりに長いブログです&専門用語やクラウドサービスの解説は必要最小限なのでそこはご了承ください. あらすじ 突然ですが, 皆さんはどのリポジトリパターンが好きですか? 「ポリレポ(Polyrepo)」パターン - マイクロサービスを構成するアプリケーションやインフラ資材を意味がある単位*1で分割してリポジトリ化する. 「モノレポ(Monorepo)」パターン - アプリケーションもインフラも

                                                                            TerraformとGitHub Actionsで複数のCloud RunをまとめてDevOpsした結果, 開発者体験がいい感じになった話. - Lean Baseball
                                                                          • Lean AI 開発論: コードを書く前に機械学習プロジェクトを評価する方法|安野貴博

                                                                            10年前に提唱された「リーンスタートアップ」と呼ばれる事業立ち上げの手法がある。リーン(=無駄がない)であること、仮説検証の速度を最大化する(=学びの量に最適化する)ことを重要視する考え方だ。フィードバックサイクルを早め、コストをなるべくかけず、必要最低限の要素にフォーカスし、素早くスタートアップを立ち上げることで、成功確率が上がるのだと言われている。 裏を返せばこれは、仮説検証に必要ない一切は削ぎ落とすべきだ、と言っている。リーンスタートアップ的やり方の有名な例として、プロダクトを作る前に、そのプロダクトのランディングページだけを作って、メーリングリスト登録やアクセス数などの反応を見ることで、需要があるか確認するやり方がある。実はコードを書くのは初期の仮説検証に全く必要ないのだ。 このように進めれば、たくさんのお金と時間を使ってプロダクトを作って、ローンチしたあとに実は需要がなかった、と

                                                                              Lean AI 開発論: コードを書く前に機械学習プロジェクトを評価する方法|安野貴博
                                                                            • 「実践的データ基盤への処方箋」から読み解く「データを扱うビジネスパーソン」のキャリアパス - Lean Baseball

                                                                              なんやかんやで, ITコンサルタント(復帰)生活から半年経ったマンです. マネジメントからアーキテクチャ, はたまた技術的なLTまでやらせてもらえて楽しく過ごしております*1. 昨年の話になりますが, コミュニティーやその他の活動で色々とお世話になってる @yuzutas0さん達が執筆しました, 「実践的データ基盤への処方箋」を頂戴いたしました. 実践的データ基盤への処方箋〜 ビジネス価値創出のためのデータ・システム・ヒトのノウハウ 作者:ゆずたそ,渡部 徹太郎,伊藤 徹郎技術評論社Amazon ひと言で言うと, データ活用のためにこういう本が欲しかったんや!!! というくらい良著で, データ活用に必要な「人・組織・アーキテクチャ」をいい感じに網羅的に扱っていて良きでした(と, 読み終えた時の感想ツイートがそう言ってました). データを扱う人すべてにおすすめしたい一冊です 読み終えた後も,

                                                                                「実践的データ基盤への処方箋」から読み解く「データを扱うビジネスパーソン」のキャリアパス - Lean Baseball
                                                                              • 野球ではじめる機械学習 - 特徴量エンジニアリングとPython, Rを用いた成績予測 - Lean Baseball

                                                                                本日のPyCon JP 2020にてお話しました以下の発表に関する補足・解説ブログとなります. スポーツデータを用いた特徴量エンジニアリングと野球選手の成績予測 - PythonとRを行ったり来たり このエントリーではスライドのスクショとともに, 参考資料 細かすぎて本編で話さなかったハナシ もし真似してやるならこれぐらいは読んでおいたほうがいいよ 的な話を中心に, 過去記事のreference等を掲載しています. スポーツデータを用いた特徴量エンジニアリングと野球選手の成績予測 これを読むと⚾️で特徴量エンジニアリングと機械学習がいい感じにできるかと思います👍 スタメン スポーツデータを用いた特徴量エンジニアリングと野球選手の成績予測 スタメン CM JX通信社 Pythonもくもく自習室 #jisyupy 特徴量エンジニアリングについて 野球データの特徴量 Python, R, SQ

                                                                                  野球ではじめる機械学習 - 特徴量エンジニアリングとPython, Rを用いた成績予測 - Lean Baseball
                                                                                • 仕事する前に知っておくと幸せかもしれないpandasのきほん - read関数にはとりあえずURL渡しておけ - Lean Baseball

                                                                                  お仕事や, (個人的には)趣味のデータ分析・開発などでpandasをよく使う人です. pandasはPythonでデータサイエンスやデータ分析(解析)をやってると必ずと言っていいほどよく使うライブラリだと思います. お仕事で同僚やインターンが書いたnotebookをよく読む(レビューする)のですが, 煩雑なことやってるけどこれ一行で書けるやで 最初からデータを整理するとそんな面倒くさいことしなくても大丈夫やで ...といったコメントを返す機会が増えてきました. これらは当人たちにフィードバックしているのですが, このフィードバックの内容が案外重要な気がしてきたのでブログに書いてみることにしました. 読んだ方の理解・生産性の向上および, 「つまらない仕事が334倍楽になる」ような感じにつながると嬉しいです🙏 TL;DR pandasのread関数にはとりあえずURLを渡しておけ &使うカラ

                                                                                    仕事する前に知っておくと幸せかもしれないpandasのきほん - read関数にはとりあえずURL渡しておけ - Lean Baseball

                                                                                  新着記事