並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 401件

新着順 人気順

if index not in list pythonの検索結果1 - 40 件 / 401件

  • 日本のウェブデザインの特異な事例

    sabrinas.spaceより。 8週間もかからなかったはずのプロジェクト 日本のウェブデザインはどう違うのか? 2013年のRandomwireのブログ投稿で、著者(David)は、日本のデザインの興味深い相違点を強調しました。日本人はミニマリストのライフスタイルで海外に知られていますが、ウェブサイトは奇妙なほどマキシマリストです。ページには様々な明るい色(3色デザイン原則を破っている)、小さな画像、そして多くのテキストが使われています。2022年11月に撮影されたこれらのスクリーンショットで、自分の目で確かめて下さい。 ブログ投稿には、文化的専門家、デザイナー仲間、そして不満を抱く市民によって支持されている、考えられる理由がいくつか挙げられていました。 この理論が今でも正しいのか、また、もっと定量的なアプローチが可能なのか気になったのでやってみました。 私が見つけたもの 各国の最も人

      日本のウェブデザインの特異な事例
    • Command Line Interface Guidelines

      Contents Command Line Interface Guidelines An open-source guide to help you write better command-line programs, taking traditional UNIX principles and updating them for the modern day. Authors Aanand Prasad Engineer at Squarespace, co-creator of Docker Compose. @aanandprasad Ben Firshman Co-creator Replicate, co-creator of Docker Compose. @bfirsh Carl Tashian Offroad Engineer at Smallstep, first e

        Command Line Interface Guidelines
      • 退屈なことはPythonにやらせよう 第2版

        一歩先行くハイパフォーマンスなビジネスパーソンからの圧倒的な支持を獲得し、自作RPA本の草分けとして大ヒットしたベストセラー書の改訂版。劇的な「業務効率化」「コスト削減」「生産性向上」を達成するには、単純な繰り返し作業の自動化は必須です。本書ではWordやExcel、PDF文書の一括処理、Webサイトからのダウンロード、メールやSMSの送受信、画像処理、GUI操作といった日常業務でよく直面する面倒で退屈な作業を、Pythonと豊富なモジュールを使って自動化します。今回の改訂では、GmailやGoogleスプレッドシートの操作、Pythonと各種モジュールの最新版への対応、演習等を増補しています。日本語版では、PyInstallerによるEXEファイルの作成方法を巻末付録として収録しました。 関連ファイル サンプルコード 正誤表 書籍発行後に気づいた誤植や更新された情報を掲載しています。お手

          退屈なことはPythonにやらせよう 第2版
        • 日本株3700社以上を分析。yfinance x「わが投資術」株式スクリーニングアプリを作った話(バイブコーディング)

          いきなりですが。 海外旅行したり働き始めたりすると、日本の良さが身に染みたと感じた人は多いんじゃないでしょうか? なんかとりあえず外で働いてみたいと思っていましたが、今はいつ戻るかと考える日々です。(とにかく温泉に入りたい) また色々と各国を回る中で、日本企業ってアジア圏や他の国にもかなり進出してるんだなぁと実感しました。(そりゃそう) そんなこんなで日本株に興味を持ち 昨年にわが投資術を購入して実践し始めました。(まだ初めて一年目なので成績はわかりません。。。が、マイナスは無し) 自分でバフェットコードや Claude mcp-yfinance などを利用しながらスクリーニングしてみましたが、毎回決算が出るたびに手動とチャット相手にあるのも何かなぁ。と思いまして。 じゃあ自動収集とスクリーニング用のアプリ作ってみよう(vibe coding) そんなノリから、日本株全銘柄を自動収集・簡易

            日本株3700社以上を分析。yfinance x「わが投資術」株式スクリーニングアプリを作った話(バイブコーディング)
          • Ubuntu 24.04 LTS サーバ構築手順書

            0 issue "letsencrypt.org" 0 issuewild "letsencrypt.org" 0 iodef "mailto:yourmail@example.jp" §OS再インストール 初期設定で期待通りの設定ができていない場合は、OSの再インストールをする。 さくらVPSのコントロールパネルから、OSを再インストールするサーバを選ぶ。 www99999ui.vs.sakura.ne.jp §OSのインストール操作 Ubuntu 24.04 LTS を選ぶ。 OSインストール時のパケットフィルタ(ポート制限)を無効にして、ファイアウォールは手動で設定することにする。 初期ユーザのパスワードに使える文字が制限されているので、ここでは簡単なパスワードにしておき、後ですぐに複雑なパスワードに変更する。 公開鍵認証できるように公開鍵を登録しておく。 §秘密鍵と公開鍵の作成 ク

              Ubuntu 24.04 LTS サーバ構築手順書
            • MCPサーバーが切り拓く!自社サービス運用の新次元 - エムスリーテックブログ

              こんにちは、エムスリーエンジニアリンググループ、コンシューマチームの園田です。本記事では、外部サービスとAIエージェントの連携を可能にするMCPプロトコルについて、技術検証の実装例を交えてお話しします。 1. MCPとは(ざっくり) MCP(Model Context Protocol)とは、Anthropic社によって策定されたAIエージェントが外部サービスから情報を参照したり連携することを目的としたプロトコルです。 「MCPサーバー」は、GitHubやPostgreSQLといったリソースをMCPで喋れるように変換してあげるプロキシのようなサーバーです。 Claude DesktopやCursorなどはMCPクライアントの機能があり、GitHubなどのMCPサーバーを利用してナレッジとして利用したり、プルリクエストの作成なども行えます。 Introduction - Model Cont

                MCPサーバーが切り拓く!自社サービス運用の新次元 - エムスリーテックブログ
              • とほほのHaskell入門 - とほほのWWW入門

                概要 Haskellとは 関数型言語 純粋関数型言語 インストール Haskell Stack Hello world 基本 予約語 コメント ブロック レイアウト 入出力 型 変数 数値 文字(Char) 文字列(String) エスケープシーケンス リスト([...]) タプル((...)) 演算子 関数 演算子定義 再帰関数 ラムダ式 パターンマッチ ガード条件 関数合成(.) 引数補足(@) 制御構文 do文 let文 if文 case文 where文 import文 ループ データ型 データ型(列挙型) データ型(タプル型) データ型(直和型) 新型定義 (newtype) 型シノニム (type) 型クラス (class) メイビー(Maybe) ファンクタ(Functor) アプリケイティブ(Applicative) モナド(Monad) モジュール (module) 高階関

                • 【感想】『Amazon Web Servicesを使ったサーバーレスアプリケーション開発ガイド』:Lambdaで本格サービス開発まで - Rのつく財団入り口

                  サーバーレスアプリケーション開発ガイド Lambda関数を用いたサーバーレス開発をもっと知っておこうと思って読んだ本の感想です。2018年4月刊行、サーバーレスの主要サービス解説にコードはPython、のみならずフロントはVue.jsを使った本格開発まで、実践的な内容が詰まった本です。 作者は現Amazon Web Services Japan所属のKeisuke69こと西谷圭介さん。Twitterでもよくお見掛けします。(@Keisuke69) サーバーレスアプリケーション開発ガイド Chapter1 サーバーレスアプリケーションの概要 1-1 サーバーレスアプリケーションとは 1-2 ユースケースとアーキテクチャパターン 1-3 サーバーレスアプリケーションのライフサイクル管理 Chapter2 Amazon Web Services(AWS)利用の準備 Chapter3 インフラを自

                    【感想】『Amazon Web Servicesを使ったサーバーレスアプリケーション開発ガイド』:Lambdaで本格サービス開発まで - Rのつく財団入り口
                  • FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ|ハイクラス転職・求人情報サイト アンビ(AMBI)

                    FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ PythonのWebフレームワークとしていま注目を集めるFastAPIは、シンプルにコードが書けるだけでなく、パフォーマンスが高いWebアプリケーションのバックエンドサーバーが構築可能です。同フレームワークの勘所をPythonスペシャリストの杜世橋さんが、初心者向けのハンズオン、そしてより実践的な画像への自動タグ付けサービス実装をとおして解説します。 FastAPIはいま非常に注目されているPythonのWebフレームワークの1つです。Flaskのようにシンプルに書ける一方でPythonのType Hintの機能をうまく活用し、HTTPのリクエスト/レスポンスをPythonの関数の引数/戻り値とシームレスにマッピングして非常に効率的に開発ができるのが最大の特徴です。非同期処理にも対応していてその名

                      FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ|ハイクラス転職・求人情報サイト アンビ(AMBI)
                    • Gemini 2.5 Proと取り組んだデータ分析のリアルな道のり - Nealle Developer's Blog

                      はじめに はじめまして。Analyticsチームの清水です。 2024年12月に入社しまして、約4ヶ月が経過しました。今回が初めてのテックブログになります。 ▼先日、入社エントリも公開しました。 本稿のテーマは、自由記述のテキストをラベリングして分類する分析タスクに対し、Geminiと共に取り組んで分かったことの共有です。 私は生成AIをそれほどたくさん使った経験があるわけではないので、これが最良の使い方というわけではないと思いますが、どのようにプロンプトを組み立て、どう効率的に分析を進められたのかを可能な限りリアルに書いていきます。 ※今回利用したモデルは、Gemini 2.5 Proです。 はじめに Geminiを活用したデータ分析の進め方 フェーズ0: アプローチの模索 - Notebook LMや教師なし学習の試行 フェーズ1: データ理解とラベルチェック - コード生成と探索的分

                        Gemini 2.5 Proと取り組んだデータ分析のリアルな道のり - Nealle Developer's Blog
                      • LangChainを使わない - ABEJA Tech Blog

                        TL; DR LangChainのメリデメを整理する過程で、今となってはopenai-pythonのうちChatGPTのAPIをを簡単に取り回せる程度のシンプルなライブラリがあるだけでも十分便利なんじゃないかと思ったので、ライブラリを個人で作ってみました。(バージョン0.0.1なのでちょっとお粗末な所もありますが) github.com はじめに こんにちは、データサイエンティストの坂元です。ABEJAアドベントカレンダーの13日目の記事です。世は大LLM時代ということで、ありがたいことにABEJAでも複数のLLMプロジェクトを推進させて頂いています。私自身もいくつかのLLMプロジェクトに参画しています。LLMといえばLangChainが便利ですね。OpenAI APIの利用だけでなく、各種ドキュメントのパースが出来たり、HuggingFaceやインデックスDBを扱う他のライブラリとインテ

                          LangChainを使わない - ABEJA Tech Blog
                        • みんなのためのLLMアプリケーション開発環境の構築事例

                          はじめに こんにちは。Game Platform DevのDong Hun Ryoo、Takenaka、Zhang Youlu(Michael)、Hyungjung Leeです。私たちの組織は、ゲームパブリッシングに必要なさまざまな機能を開発・運用する役割を担っています。 私たちは最近、組織内の業務効率を高めるためにさまざまなLLM(large language model)アプリケーションを開発し、それと連携してLLMOpsシステムの構築プロジェクトを行いました。プロジェクトの主な目標の一つは、参入障壁が高いLLMアプリケーション開発を、職種に関係なく誰でも簡単に作成できる環境を構築することでした。そのため、さまざまなことを考えながら試行錯誤を経た結果、誰でも簡単にアクセスできる開発・デプロイ環境を整えました。 今回の記事では、LLMアプリケーションの一般的な開発方法と開発プロセスで直面

                            みんなのためのLLMアプリケーション開発環境の構築事例
                          • Why, after 6 years, I’m over GraphQL

                            GraphQL is an incredible piece of technology that has captured a lot of mindshare since I first started slinging it in production in 2018. You won’t have to look far back on this (rather inactive) blog to see I have previously championed this technology. After building many a React SPA on top of a hodge podge of untyped JSON REST APIs, I found GraphQL a breath of fresh air. I was truly a GraphQL h

                            • Python普及しろ協会に入会したい

                              この記事はタナイ氏によるPython滅ぼす協会に入会したいを読んでから執筆したものです。 この記事の趣旨はPython滅ぼす協会に入会したいに対する反論という形をとりながら、タナイ氏により「バカの言語」と揶揄され、「使ってエンジニアを名乗るというのは」「滑稽」とまで言われたPythonの立場を再考することです。 追記 本記事は「Pythonはこれだけ優れた言語だからみんな使おう!」というものではなく「言うほど酷くないと思うよ」程度のものです。 型アノテーションがあるからと言って静的型付けを軽視しているわけでもなければ、map関数をもってmapメソッドを不要だと言っているわけでもありません。 この記法は嫌い〜この記法が好き〜と表明することは個人の自由ですが、同様に「この記法は実はこういう意味があって〜」という意見があればそれを聞いた上で、物事を判断して欲しいです。もちろん、聞いても意見が変わ

                                Python普及しろ協会に入会したい
                              • 大実験!ChatGPTは競プロの問題を解けるのか (2024年5月版) - E869120's Blog

                                1. はじめに 2024 年 5 月 14 日、OpenAI 社から新たな生成 AI「GPT-4o」が発表され、世界に大きな衝撃を与えました。これまでの GPT-4 よりも性能を向上させただけでなく1、音声や画像のリアルタイム処理も実現し、さらに応答速度が大幅に速くなりました。「ついにシンギュラリティが来てしまったか」「まるで SF の世界を生きているような感覚だ」という感想も見受けられました。 しかし、いくら生成 AI とはいえ、競技プログラミングの問題を解くのは非常に難しいです。なぜなら競技プログラミングでは、問題文を理解する能力、プログラムを実装する能力だけでなく、より速く答えを求められる解法 (アルゴリズム) を考える能力も要求されるからです。もし ChatGPT が競技プログラミングを出来るようになれば他のあらゆるタスクをこなせるだろう、と考える人もいます。 それでは、現代最強の

                                  大実験!ChatGPTは競プロの問題を解けるのか (2024年5月版) - E869120's Blog
                                • MCP ツールのコンテキスト圧迫の問題とその解決策

                                  MCP の普及に伴い、多数のツール定義が LLM のコンテキストを圧迫する課題が浮上しています。本記事では Progressive disclosure(段階的開示)による最小限の情報提供、MCP を使ったコード実行によるツール呼び出しの効率化、単一の検索ツールによるコンテキスト削減など、実践的な解決策を Claude Skills や Cloudflare Code Mode の事例とともに解説します。 Model Context Protocol (MCP) は登場からおよそ 1 年が経過し、事実的な標準としての地位を確立しつつあります。MCP が普及するにつれて、MCP ツールの課題点も浮き彫りになってきました。その課題の 1 つが、1 つのタスクを達成するために多くのツールが読み込まれ、結果として多くのコンテキストが消費されてしまうという問題です。 前提として、LLM がタスクの達

                                    MCP ツールのコンテキスト圧迫の問題とその解決策
                                  • Python製静的サイトジェネレーターSphinxでWebサイトを構築して公開 | gihyo.jp

                                    鈴木たかのり(@takanory)です。今月の「Python Monthly Topics」では、Python製の静的サイトジェネレーターSphinxを使用してWebサイトを構築し、テーマを適用、外部へ公開する流れについて紹介します。後半ではSphinxの便利な拡張機能を紹介し、Webサイトをより便利にしていきます。 Markdownでドキュメントを書くだけで、きれいなWebサイトが簡単に公開できるので、ライブラリのドキュメントなどでもよく使われています。 Sphinxとは SphinxはPython製の静的サイトジェネレーターです。静的サイトジェネレーターとは、Markdown等の軽量マークアップのテキストファイルから、静的なWebサイトを生成するアプリケーションのことを言います。Python製の静的サイトジェネレーターにはSphinxを含め以下のツールなどがあります。 Sphinx:h

                                      Python製静的サイトジェネレーターSphinxでWebサイトを構築して公開 | gihyo.jp
                                    • Qwen3 の概要|npaka

                                      以下の記事が面白かったので、簡単にまとめました。 ・Qwen3: Think Deeper, Act Faster 1. Qwen3本日 (2025年4月28日) 、「Qwen3」をリリースしました。「Qwen3-235B-A22B」は、「DeepSeek-R1」「o1」「o3-mini」「Grok-3」「Gemini-2.5-Pro」などの他のトップティアモデルと比較して、コーディング、数学、一般的な機能などのベンチマーク評価で競争力のある結果を達成しています。さらに、小型のMoEである「Qwen3-30B-A3B」は、10倍のアクティブパラメータを持つ「QwQ-32B」を凌駕し、「Qwen3-4B」のような小さなモデルでさえ、「Qwen2.5-72B-Instruct」の性能に匹敵します。 2つのMoEモデルをオープンウェイト化しています。「Qwen3-235B-A22B」は、総パラメ

                                        Qwen3 の概要|npaka
                                      • あらゆるプログラミング言語の最先端を行くScala 3のマクロ - 貳佰伍拾陸夜日記

                                        この記事はScala Advent Calendar 2023の11日目です. 最近, 趣味でScala 3のコードをだいぶ書いていて, マクロの使い心地のよさに感心しました. 理論的な背景も含めて, 産業界で多く使われているプログラミング言語の中では筆者の知る限りぶっちぎりに優れたマクロを備えています. 他の言語にも見習ってほしいですね. たぶん見習おうとすると処理系を作り直す羽目になりますが. この記事ではScala 3のマクロのすごいところを例を使って紹介します. マクロの実践的な例 準備 実践的な例: NamedArray – 名前でアクセスできる配列 NamedArrayのマクロ実装 記述が明瞭 メタレベルのプログラムの扱い クォートとスプライスがある パターンマッチもある 生成コードに型がつく 多段階計算に基づいている クォートとスプライスの本当の意味 ネストしたスプライス ネ

                                          あらゆるプログラミング言語の最先端を行くScala 3のマクロ - 貳佰伍拾陸夜日記
                                        • REST API Design Best Practices Handbook – How to Build a REST API with JavaScript, Node.js, and Express.js

                                          By Jean-Marc Möckel I've created and consumed many API's over the past few years. During that time, I've come across good and bad practices and have experienced nasty situations when consuming and building API's. But there also have been great moments. There are helpful articles online which present many best practices, but many of them lack some practicality in my opinion. Knowing the theory with

                                            REST API Design Best Practices Handbook – How to Build a REST API with JavaScript, Node.js, and Express.js
                                          • DuckDB でハイブリッド検索

                                            DuckDB を利用してベクトル検索と日本語全文検索の両方を同時に利用できます。さらにこれらの結果をマージして Reranking を行うことでハイブリッド検索をサクサクっと実現する事が​できます。 Rerankerどうやらベクトル検索した結果と日本語全文検索した結果をマージして、クエリーとマージ結果を再度ランキング付けする仕組みのようです。 ここでは参考にした記事を共有する程度にしておきます。 日本語最高性能のRerankerをリリース / そもそも Reranker とは? - A Day in the Lifeリランキング モデルによる RAG の日本語検索精度の向上 - NVIDIA 技術ブログ今回は Reranker に hotchpotch/japanese-reranker-cross-encoder-large-v1 を利用しました。 以下は参考コードです。 [projec

                                              DuckDB でハイブリッド検索
                                            • プロと読み解くRuby 3.4 NEWS - STORES Product Blog

                                              プロと読み解くRuby 3.4 NEWS テクノロジー部門技術基盤グループの笹田(ko1)と遠藤(mame)です。Ruby (MRI: Matz Ruby Implementation、いわゆる ruby コマンド) の開発をしています。お金をもらって Ruby を開発しているのでプロの Ruby コミッタです。 本日 12/25 に、恒例のクリスマスリリースとして、Ruby 3.4.0 がリリースされました(Ruby 3.4.0 リリース )。今年も STORES Product Blog にて Ruby 3.4 の NEWS.md ファイルの解説をします(ちなみに、STORES Advent Calendar 2024 の記事になります。他も読んでね)。NEWS ファイルとは何か、は以前の記事を見てください。 プロと読み解く Ruby 2.6 NEWS ファイル - クックパッド開発者

                                                プロと読み解くRuby 3.4 NEWS - STORES Product Blog
                                              • ぼくのMac環境 ver.のんピ | DevelopersIO

                                                何年後かの自分へ こんにちは、のんピ(@non____97)です。 業務で使用する新しいMacが届きました。 新しいMacを初期セットアップするにあたって「今の設定どうだったっけ...」と調べる時間が結構かかってしまいました ということで何年後かの自分がまた新しいMacに乗り換える際に手間取らないように、設定した内容を書き記しておきます。 移行先のMacの情報は以下の通りです。M1 Max、嬉しい。 # OSのバージョンの確認 > sw_vers ProductName: macOS ProductVersion: 12.4 BuildVersion: 21F79 # カーネルのバージョン確認 > uname -r 21.5.0 # CPUのアーキテクチャの確認 > uname -m arm64 # CPUの詳細確認 > sysctl -a machdep.cpu machdep.cpu.

                                                  ぼくのMac環境 ver.のんピ | DevelopersIO
                                                • The Prompt Engineering Playbook for Programmers

                                                  Developers are increasingly relying on AI coding assistants to accelerate our daily workflows. These tools can autocomplete functions, suggest bug fixes, and even generate entire modules or MVPs. Yet, as many of us have learned, the quality of the AI’s output depends largely on the quality of the prompt you provide. In other words, prompt engineering has become an essential skill. A poorly phrased

                                                    The Prompt Engineering Playbook for Programmers
                                                  • ElasticsearchとKibela APIを使ってSlackでのCSお問い合わせ対応業務を改善した話 - BASEプロダクトチームブログ

                                                    この記事はBASE Advent Calendar 2020の11日目の記事です。 devblog.thebase.in BASE株式会社 Data Strategy チームの@tawamuraです。 BASEではオーナーの皆様や購入者様のお問い合わせに対して、Customer Supportチームが主となって対応をしています。その中でもいくつかの技術的なお問い合わせに対しては、以下のようにSlackの専用チャンネルを通して開発エンジニアに質問を投げて回答を作成することになっています。 CSチームから調査を依頼されるお問い合わせの例 これらのCS問い合わせ対応は日々いくつも発生しており、CSお問い合わせ対応を当番制にして運用してみた話 でもあるように週ごとに持ち回り制で各部門のエンジニアが対応しているのですが、どうしても調査や対応に時間が取られてしまうという問題が発生していました。 dev

                                                      ElasticsearchとKibela APIを使ってSlackでのCSお問い合わせ対応業務を改善した話 - BASEプロダクトチームブログ
                                                    • GitHub - modelcontextprotocol/servers: Model Context Protocol Servers

                                                      Official integrations are maintained by companies building production ready MCP servers for their platforms. 21st.dev Magic - Create crafted UI components inspired by the best 21st.dev design engineers. ActionKit by Paragon - Connect to 130+ SaaS integrations (e.g. Slack, Salesforce, Gmail) with Paragon’s ActionKit API. Adfin - The only platform you need to get paid - all payments in one place, in

                                                        GitHub - modelcontextprotocol/servers: Model Context Protocol Servers
                                                      • 競馬必勝本は本当に当たるのかを検証!〜Pythonで実装する馬券自動選択ツール〜 - エニグモ開発者ブログ

                                                        こんにちは、サーバーサイドエンジニアの竹本です。 この記事は Enigmo Advent Calendar 2020 の3日目の記事です。 みなさまは2020年に買った中でよかったものはなんでしょう? 私はiPadです。 最新 Apple iPad Pro (12.9インチ, Wi-Fi, 128GB) - シルバー (第4世代) 発売日: 2020/03/25メディア: Personal Computers 主にkindleを見開きで読むことに活用しています。 エニグモの福利厚生の一つ「エンジニアサポート」で5万円の補助を受けました。わーい。 https://enigmo.co.jp/recruit/culture/ そしてみなさまは馬券、買っていますか? 馬券は競馬に賭ける際に購入する投票券です。 1口100円から、ネットでも気軽に購入することができます。(競馬は20歳から) 弊社にも

                                                          競馬必勝本は本当に当たるのかを検証!〜Pythonで実装する馬券自動選択ツール〜 - エニグモ開発者ブログ
                                                        • Python×株式投資:従来の100倍!銘柄選抜のバックテストを高速化した話 - Qiita

                                                          # ----------------------------- # 2nd Screening V1 # ----------------------------- import time global_start_time = time.time() from google.colab import drive drive.mount('/content/drive') import pandas as pd import numpy as np import os from tqdm.notebook import tqdm import yfinance as yf from curl_cffi import requests # -------------------------------------------------- # ヘルパー関数定義セクション # --------

                                                            Python×株式投資:従来の100倍!銘柄選抜のバックテストを高速化した話 - Qiita
                                                          • GPT in 60 Lines of NumPy | Jay Mody

                                                            January 30, 2023 In this post, we'll implement a GPT from scratch in just 60 lines of numpy. We'll then load the trained GPT-2 model weights released by OpenAI into our implementation and generate some text. Note: This post assumes familiarity with Python, NumPy, and some basic experience with neural networks. This implementation is for educational purposes, so it's missing lots of features/improv

                                                            • 【ChatGPT】GPT-4でPythonの画像ビューワを作成してみた | DevelopersIO

                                                              新規事業統括部の山本です。 今日OpenAIのChatGPTのモデルとして、GPT-4が利用可能になりました。早速使ってみようと思います。 やってみる 今回は画像のビューワを作成してみます。ちょうどデータセットの画像や、画像モデルに入力した結果を表示するツールがほしいと思っていました。 import os import tkinter as tk from tkinter import filedialog from PIL import Image, ImageTk def browse_folder(): folder_path = filedialog.askdirectory() if not folder_path: return images_frame.delete("all") load_images(folder_path) def load_images(folder_

                                                                【ChatGPT】GPT-4でPythonの画像ビューワを作成してみた | DevelopersIO
                                                              • BlenderとPythonとUnityで巨大な立体迷路を作成する - Qiita

                                                                このようなゲームを作りました。基本的には迷路のゲームです。 サイトのリンク 本記事ではこのゲームの製作過程を掲載すると共に、きっと有益にな情報をまとめます。楽しんで頂けたら幸いです。 Step0 前提 まず用語を整理します。 Blender : 3DCG制作ソフト。Pythonによって操作が可能になっています。 Python : 言わずと知れた有名プログラミング言語。 Unity : ゲーム制作ソフト。スタート画面の表示やゲームオーバーの判定などをしてくれます。言語はC#です。 大まかな流れとしては、 Step1. Blenderで3Dオブジェクトを作成 Step2. Pythonでそれを迷路に組み立てる Step3. Unityでゲームとして完成させる という風になっています。 コードに関しては、読みやすさも考え記事中においては一部抜粋に留めています。もし全体のコードを知りたい場合はプル

                                                                  BlenderとPythonとUnityで巨大な立体迷路を作成する - Qiita
                                                                • データカタログにNotionを選択した理由

                                                                  実装方法 冪等性を担保したGoogle Cloud Composerの設計と実装で紹介しているとおり、Luupのデータ基盤はGoogle Cloud Composerを軸に動いています。なので今回も、Google Cloud Composerの環境下に作りました。 アウトプットイメージは以下です。 以下のNotion APIのDocumentを参考に実装を進めていきます。 サンプルコードも豊富で、説明も丁寧なので簡単に実装できました。 以下、コード一例です。 # Notionのフォーマットに変換するメソッド def format_standard_property_value(self, property_name: str, value: str): if property_name == "title": return {"title": [{"text": {"content": v

                                                                    データカタログにNotionを選択した理由
                                                                  • 【Python実践編】ビットコインのアービトラージ(裁定取引)コード例 - Qiita

                                                                    [8/27追記] 投資関連のPythonプラグラム等を自由にシェアできるサービスのベータ版を作成しました。 興味がある方は覗いてみてください↓ inbaseシェア|EA・bot・プログラムのシェアサービス この投稿では、Python3を使って仮想通貨の裁定取引を行います。 今回は、コインチェックとGMOコインの価格差を利用してサヤ抜きを行うことを目指します。 以前自分のブログで、 【Pythonデモコード】仮想通貨のアービトラージ(裁定取引)botの作り方 という記事を公開したのですが、こちらはあくまでもシュミレーションで実際に売買が作動することはありませんでした。 今回は実際に取引所のAPIを操作するところまでコートに組み込んでみました。 なおコインチェックと GMO コインの口座開設から API キーの発行までは下の記事で公開している手順と全く同じです。 一応画像付きで解説しているので

                                                                      【Python実践編】ビットコインのアービトラージ(裁定取引)コード例 - Qiita
                                                                    • 検索エンジンPyTerrierを使った日本語検索パイプラインの実装 - エムスリーテックブログ

                                                                      エムスリーエンジニアリンググループ AI・機械学習チームでソフトウェアエンジニアをしている中村(po3rin) です。検索とGoが好きです。 今回は社内でPyTerrierを採用して文書検索BatchをPythonで実装したので、PyTerrierの紹介とPyTerrierで日本語検索を実装する方法を紹介します(日本語でPyTerrierを扱う記事は多分初?)。 PyTerrierとは 弊社でのPyTerrier利用 PyTerrierで日本語検索 Phrase Queryの注意点 まとめ We're hiring !!! PyTerrierとは Terrierのロゴ PyTerrierは、Pythonでの情報検索実験のためのプラットフォームです。 JavaベースのTerrierを内部的に使用して、インデックス作成と検索操作を行うことができます。基本的なQuery RewritingやBM

                                                                        検索エンジンPyTerrierを使った日本語検索パイプラインの実装 - エムスリーテックブログ
                                                                      • Raspberry PiとAWSを利用して子どもたちのゲーム時間を可視化してみた | DevelopersIO

                                                                        DynamoDBの作成 さっそくテーブルをCDKで構築してみます。 from aws_cdk import ( Stack, RemovalPolicy, aws_dynamodb as dynamodb, # DynamoDBのライブラリをimport ) from constructs import Construct class GameCounterStack(Stack): def __init__(self, scope: Construct, construct_id: str, **kwargs) -> None: super().__init__(scope, construct_id, **kwargs) # The code that defines your stack goes here # ここから下に追記していきます。 # DynamoDB ログデータ格納用

                                                                          Raspberry PiとAWSを利用して子どもたちのゲーム時間を可視化してみた | DevelopersIO
                                                                        • CIの時間を(できるだけ楽して)半分にしてみた - Nealle Developer's Blog

                                                                          こんにちは、ニーリーの佐古です。 現在開発速度や開発者体験の向上のため、取り組みの諸々を遂行しています。 開発者体験とCI 天井の雨漏りが4か月ほど止まらないので私の開発者体験は酷いことになっています。 さて、皆さんCIの待ち時間はお好きですか?私は大嫌いです。 弊社バックエンドリポジトリのPR時CIはプロダクトの成長に合わせて実行時間が順調に伸びており、 開発速度と開発者体験の双方に悪影響をもたらしていました。 実は別チームで改善のための試みがなされたことはあったのですが、 そこで行き当たった問題をある程度解決してどうにかエピソードになる程度の成果を得られたので 簡単に記しておこうと思います。 前提 プロダクトはDjangoで、リポジトリはGitHubで管理されています。 AS-WAS ついこないだまでのPR時CI。 こちらがもともとのGitHub CIのグラフです。 正直経験上そこまで

                                                                            CIの時間を(できるだけ楽して)半分にしてみた - Nealle Developer's Blog
                                                                          • Google ColabとVSCodeを用いた分析環境運用方法 〜kaggle Tipsを添えて〜 - ギークなエンジニアを目指す男

                                                                            こんにちは。takapy(@takapy0210)です。 本エントリは下記イベントでLTした内容の元に、補足事項やコードスニペットなどをまとめたものになります。 kaggle-friends.connpass.com ちなみに今回LTしようと思ったきっかけは以下のような出来事からだったので、みなさんのTipsなども教えていただけると嬉しいです! 情報出回ってる感あるけど、colab pro × vscode ssh のオレオレ運用方法を晒すことにより、もっと良い方法のフィードバックもらえるのではドリブンでLTするのはありなのかもしれない・・・?— takapy | たかぱい (@takapy0210) 2021年8月1日 LT資料 当日みなさんから頂いたコメント 環境構築手順 ngrokアカウント作成と認証キーの取得 ColabにGoogleドライブを接続、ngrok、sshサーバー起動

                                                                              Google ColabとVSCodeを用いた分析環境運用方法 〜kaggle Tipsを添えて〜 - ギークなエンジニアを目指す男
                                                                            • 【機械学習】機械学習を用いたin silico screening【AI創薬】~第2/5章 スクレイピングによる公共データベース(PDB)からの機械学習データを収集~ - LabCode

                                                                              AI創薬とは? AI創薬は、人工知能(AI)技術を利用して新しい薬物を発見、開発するプロセスです。AIは大量のデータを高速に処理し、薬物の候補を予測したり、薬物相互作用を評価したりします。また、AIは薬物の効果や安全性をシミュレートすることも可能で、臨床試験の前の段階でリスクを評価することができます。これにより、薬物開発のコストと時間を大幅に削減することが期待されています。AI創薬は、薬物開発の新しいパラダイムとして注目を集め、製薬企業や研究機関で積極的に研究、導入が進められています。また、バイオインフォマティクス、ケモインフォマティクス、機械学習、ディープラーニングなどの技術が組み合わされ、薬物開発のプロセスを革新しています。さらに、AI創薬は個人化医療の推進にも寄与し、患者にとって最適な治療法を提供する可能性を秘めています。 今回はAI創薬の中でも、in silico screeeni

                                                                              • yt-dlp オプション一覧及びそのメモ - †MASAYOSHI†のオンラインメモ帳

                                                                                youtube-dlの開発が止まっておりfork版のyt-dlpに移る事にした。yt-dlpはyoutube-dlのforkであるyoutube-dlcのそのまたforkになる。オリジナルであるyoutube-dlのオプション解説はyoutube-dl オプション一覧及びそのメモ。 2022/06/19更新 2022/09/06更新 OPTIONS -h, --helpヘルプを表示する。 --versionプログラムのVerを表示する。 -U, --update --no-update (default)プログラムのupdateを実行するかどうか。 -i, --ignore-errorsダウンロードエラーを無視する。プレイリストごとダウンロードするような時に使う。エラーで失敗してもダウンロードは成功したとみなされる。 --no-abort-on-error (default) --abor

                                                                                  yt-dlp オプション一覧及びそのメモ - †MASAYOSHI†のオンラインメモ帳
                                                                                • ソースコード & ドキュメントに対応したGraph RAGの実装(Tree-sitter + LightRAG)

                                                                                  (module (function_definition (identifier) # ← ここに関数名「sample_func」が含まれます (parameters) (block (expression_statement (call (identifier) (argument_list (string)))))) (expression_statement (call (identifier) (argument_list)))) ノードが色々取れましたが、「function_definition」が関数、その子である「identifier」が関数名を表すため、 function_definition == 子ノード ==> identifier となっている箇所を探索すれば抽出できます(関数ではあっても「lambda」など異なる場合もあります)。 今回は上記のようにTree-si

                                                                                    ソースコード & ドキュメントに対応したGraph RAGの実装(Tree-sitter + LightRAG)