ゼロから始める深層強化学習(NLP2018講演資料)/ Introduction of Deep Reinforcement Learning

最近、人に本を薦める事が多くなった。とりあえずこの辺を読むといいですよ的なリストを作っておくと便利だと思ったので作ることにした。 以下、「事前知識のいらない入門本」「事前知識はいらないけど本格的な本」「事前知識がないと何言ってるかわからないけど有益な情報が満載な本」の3つにわけて列挙する。 事前知識のいらない入門本 数式少なめ、脳負荷の小さめな本をいくつか。何をやるにしてもデータ構造、アルゴリズム、数学はやっておくと幸せになれるよ。 情報検索と言語処理 データマイニングとか自然言語処理とかやりたい人にはとりあえずこれ。さすがに古い話が多くなってきたのでそろそろ新しい入門用情報検索本がでないかなあと思っている。 図解・ベイズ統計「超」入門 伝説のベイジアン先生がベイズの基礎を教えてくれる本。ベイズやりたい人はこれ。 珠玉のプログラミング データ構造とかアルゴリズムとかの考え方の基礎を教えてく
2010/8/6,7の2日間を用いて、「言語処理のための機械学習入門」を輪読する勉強会を開催しました。 発表者の皆様、お疲れ様でした。 以下、現時点で公開されている発表スライドを掲載します。 (発表資料に問題等あれば、TwitterのDMなどで御連絡ください。サイドバーのプロフィール欄に連絡先が記載されています。) 2章:文書および単語の数学的表現 100816 nlpml sec2View more presentations from shirakia. 4章:分類 Ml for nlp_chapter_4View more presentations from hylosy.Ml4nlp 4 2View more presentations from beam2d. 5章:系列ラベリング NLPforml5View more presentations from kisa12012.
最近では機械学習の認知度も上がってきていて専門家でなくてもナイーブベイズやSVMなどの名前を知っている人も増えてきたように思う。 そんなわけでちょっと機械学習をはじめてみようかな、と思っている人も多いのではないだろうか。とはいえ「数式よくわからない」「確率嫌い」といった理由で尻込みしているケースも多いのでは。 そこで予備知識ゼロでもわかるような機械学習の入門記事を書いてみたよ。 機械学習を「作りたい」のか「使いたいのか」 まず最初に確認したいのがこれ。使いたいだけならまずはSVMを使ってみれば良い。世の中にはlibsvmやsvmlightという良いツールがあるのでそれを使おう。以下の記事は機械学習を「作りたい」「仕組みを知りたい」人向けの内容になっている。 「最も簡単な機械学習はナイーブベイズ」という幻想 機械学習といえばナイーブベイズという話がよくある。ナイーブ(単純)という名前からいか
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く