今回は、状態空間モデルの中でも基礎となる、ローカルレベルモデルをPyStan、PyMC3、Edwardで実装してみました。 コードは以下にも置いておきました。 ※Stanのログ出力も入ってしまって、とても長いので注意 GitHub: https://github.com/Gin04gh/datascience/blob/master/compare_state_space_model/notebook.ipynb Statsmodelsで状態空間モデル 適当に時系列データを作成します。 import numpy as np import matplotlib import matplotlib.pylab as plt %matplotlib inline from tqdm import tqdm y = np.cumsum(np.random.normal(size=100)) plt
5. ベイズ推定 ベイズ推定は観測データに基づいて確率モデルのパラメータの不確 かさを 推定する⽅法です. p(X|D) = p(D|X)p(X) p(D) • X: 確率モデルのパラメータ • D: 観測データ • p(X): 確率モデルのパラメータ事前分布 • p(D|X): 尤度 • p(X|D): 確率モデルのパラメータ事後分布 事後分布を解析的に計算できるのは限られた場合であり, 複雑な確率モデルでは近似計算が必要です. 5 6. ベイズ推定の近似計算 MCMC 事後分布からサンプリングを⾏う⽅法です. • ⻑所: 複雑な式の導出が不要 (尤度と事前分布を記述すれば良く, 分布に関する仮定が緩い) • 短所: マルコフ連鎖の収束判定が難しい 変分ベイズ法 事後分布を試験分布で近似する⽅法です. • ⻑所: MCMC と⽐べて収束が速い • 短所: 確率モデルごとにパラメータ更新式
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く