以前の記事でオートエンコーダによる異常検知は古い!と書いてしまいましたが、 最近は進化しているようです。 今回ご紹介する論文は、損失関数を工夫することで通常のオートエンコーダよりも 異常検知能力を上げる手法です。 ※本稿の図は論文(Improving Unsupervised Defect Segmentation by Applying Structural Similarity To Autoencoders)より引用しています。 論文の概要 通常のオートエンコーダによる異常検知は、微小な異常は捉えられない。 そこで、一枚の画像に対し小さな枠を用意して「輝度」、「コントラスト」、「構造情報」の類似度を計算して異常検知を行う。 本手法を使うことで、通常のオートエンコーダやVAEの異常検知と比べて、AUCで大幅な向上が見られた。 異常部分の可視化についても、通常のオートエンコーダよりも優れ