エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
「横倒しにした円柱容器に入ったレベルnの液体の体積」について。
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
「横倒しにした円柱容器に入ったレベルnの液体の体積」について。
円柱は完全に横倒しになっているんだとすれば、円柱のどこを切っても水深は同じですが、そういうご質問... 円柱は完全に横倒しになっているんだとすれば、円柱のどこを切っても水深は同じですが、そういうご質問と解釈して良いのでしょうか? 実際に図を描きながら読んでくださいね。 円を描き、円に2点で交わる直線を描いて、この直線が水面を表すと考えます。直線と円弧で囲まれたDの字型の部分の面積が円の面積の何倍か、を求めれば良い。 水は半分以下だとします。(もし半分より多く水が入っている場合は、水のない部分のDの字型の面積を円の面積から引き算すれば良い。) 円と水面との接点(2つありますのでA,Bとする)と円の中心Cとでできる二等辺三角形を描きます。この三角形の頂角(Cでの角度)を2θとします。 円の半径をrとして、円の中心から水面までの最短距離をhとします。つまり水面を底辺とする、二等辺三角形の高さがhです。すると h = r cos θ 三角形ABCの面積Sは S = hr sin θ よって、 S =