エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
LLMの推論を効率化する量子化技術調査 【技術動向調査】 - Platinum Data Blog by BrainPad ブレインパッド
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
LLMの推論を効率化する量子化技術調査 【技術動向調査】 - Platinum Data Blog by BrainPad ブレインパッド
本記事は、当社オウンドメディア「Doors」に移転しました。 約5秒後に自動的にリダイレクトします。 ブ... 本記事は、当社オウンドメディア「Doors」に移転しました。 約5秒後に自動的にリダイレクトします。 ブレインパッドは、LLM/Generative AIに関する研究プロジェクトを立ち上げ、この「Platinum Data Blog」を通じてLLM/Generative AIに関するさまざまな情報を発信をしています。 本記事から週に1回程度の頻度で、社内で実施している生成AI・LLMに関する論文レビュー会の内容をピックアップのうえ配信していきますので、ぜひご期待ください。 今回は、LLMの学習や推論の効率化・高速化に関する4つの技術論文をご紹介させていただきます。 目次 LLM論文レビュー会とは 今回のテーマ A Survey of Quantization Methods for Efficient Neural Network Inference 選定理由 論文概要 量子化の基本的な手