エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
Revisiting L1 Loss in Super-Resolution: A Probabilistic View and Beyond を読んで - CADDi Tech Blog
記事へのコメント0件
- 注目コメント
- 新着コメント
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
Revisiting L1 Loss in Super-Resolution: A Probabilistic View and Beyond を読んで - CADDi Tech Blog
はじめに こんにちは。2022年に誕生したAI Labというチームで、主に図面解析をしている中村遵介です。 ... はじめに こんにちは。2022年に誕生したAI Labというチームで、主に図面解析をしている中村遵介です。 趣味が料理と画像を4倍に拡大することなので、今日は最近読んだ「Revisiting $l_1$ Loss in Super-Resolution: A Probabilistic View and Beyond[1]」という、画像の拡大で利用される損失関数に関する論文を紹介したいと思います。 趣味以外の理由として、CADDiでは図面画像の解析を行なっておりノイズ除去や画像拡大などの分野に注目しているという点もあります。 畳み込みニューラルネットに関する知識は必要ですが、画像の拡大に関する知識は必要としないように書いたつもりです。 論文の概要 いったん細かい話を置いておいて、論文の概要をざっくりご説明します。 この論文が取り組んだ課題は以下の点になるかと思います。 入力された画像を拡大
2024/05/29 リンク