エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
記事へのコメント1件
- 注目コメント
- 新着コメント
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
Kaggle創薬コンペにおけるDeep Learningの適用 - Technical Hedgehog
創薬においてコンピュータの活用はますます盛んになってきており、2012年にはKaggleでコンペも開催され... 創薬においてコンピュータの活用はますます盛んになってきており、2012年にはKaggleでコンペも開催されました。このコンペは標的に対する分子の活性を推定するというタスクでした。 用いられた手法としては1位はDeep Learning、2位は非Deepな機械学習手法でありスコアにこそ大差はありませんでしたが、創薬においてDeep Learningの適用可能性を示したことで当時は話題になったそうです。だいぶ前のコンペなの解説記事はすでに多くありますが、コンペを通じて創薬の概要とDeep Learningがどのようなアプローチで適用されたのかを紹介してみます。 !Caution! できる限りの調査をしましたが、私は製薬や医療に詳しい人ではないので誤った解釈をしてしまっている可能性があります。「ここ間違っている」と言う点がありましたら指摘いただけると幸いです。 では、はじめにコンペのタスク背景と
2019/05/03 リンク