概要: 本研究では,畳み込みニューラルネットワークを用いて,シーンの大域的かつ局所的な整合性を考慮した画像補完を行う手法を提案する.提案する補完ネットワークは全層が畳み込み層で構成され,任意のサイズの画像における自由な形状の「穴」を補完できる.この補完ネットワークに,シーンの整合性を考慮した画像補完を学習させるため,本物の画像と補完された画像を識別するための大域識別ネットワークと局所識別ネットワークを構築する.大域識別ネットワークは画像全体が自然な画像になっているかを評価し,局所識別ネットワークは補完領域周辺のより詳細な整合性によって画像を評価する.この2つの識別ネットワーク両方を「だます」ように補完ネットワークを学習させることで,シーン全体で整合性が取れており,かつ局所的にも自然な補完画像を出力することができる.提案手法により,様々なシーンにおいて自然な画像補完が可能となり,さらに従来の