タグ

標準偏差に関するkyota98のブックマーク (2)

  • 統計学入門−第1章

    1.3 データの要約方法 (1) 度数分布図 統計学ではデータをどのようにして要約し、集団の様子をどのように記述するのでしょうか? それを説明するために第1節の体重測定の例をもう一度取り上げてみましょう。 データを要約したい時は、まず始めにデータを見やすいようにグラフ化します。 それには横軸にデータの値を取り、縦軸にその数をプロットした度数分布図(frequency distribution)を用います。 一般的な度数分布図ではデータの値をいくつかの区間に区切り、その区間の中に入るデータの数を柱状グラフとしてプロットします。 この図が度数分布図と呼ばれるわけは、データの数のことを数学では度数と呼ぶからです。 体重測定のデータを度数分布図で表したところ、図1.3.1のようになったとします。 このように最初にデータを目に見えるようにグラフ化する(見える化する)のは大変重要です。 これによってデ

    統計学入門−第1章
  • (おまけ) イラストでわかる自由度と不偏分散 

    文に戻る (おまけ) イラストでわかる自由度と不偏分散 標準偏差を計算するときに、なぜデータ個数ではなく自由度 n-1 を使うの? そもそも自由度って何? というご質問を受ける。 標準偏差の計算と自由度の関係がわかりにくいということで、文にバラバラに書いてあるものを、そこだけまとめなおしてみました。 <不偏分散の公式> 平方和S 不偏分散V=━━━━━━━━ 自由度n-1 不偏分散は 標準偏差 2(σ 2)の最もよい推定値になっています。偏っていないという意味で不偏と名づけられています。いっぽう、平方和をデータ個数で割ると、真の標準偏差値より小さめの数値となります。 標準偏差とは何か (真の平均 μ で算出したとき) 標準偏差とは何かを知るために、まず面積の平均値を計算することからはじめよう。 Q: いろいろな大きさの正方形があります。この平均的な面積の正方形をどうやって描けば いい?

  • 1