Applications of large-scale knowledge graphs in the e-commerce platforms can improve shopping experience for their customers. While existing e-commerce knowledge graphs (KGs) integrate a large volume of concepts or product attributes, they fail to discover user intentions, leaving the gap with how people think, behave, and interact with surrounding world. In this work, we present COSMO, a scalable
Extraction and interpretation of intricate information from unstructured text data arising in financial applications, such as earnings call transcripts, present substantial challenges to large language models (LLMs) even using the current best practices to use Retrieval Augmented Generation (RAG) (referred to as VectorRAG techniques which utilize vector databases for information retrieval) due to
株式会社ナレッジセンスは、生成AIやRAGを使ったプロダクトを、エンタープライズ向けに開発提供しているスタートアップです。本記事では、RAGの性能を高めるための「HybridRAG」という手法について、ざっくり理解します。 この記事は何 この記事は、RAGシステムを専門用語に強くするための手法「HybridRAG」の論文[1]について、日本語で簡単にまとめたものです。 今回も「そもそもRAGとは?」については、知っている前提で進みます。確認する場合は以下の記事もご参考下さい。 本題 ざっくりサマリー HybridRAGは、通常のRAG(Retrieval Augmented Generation)で用いられる「ベクトル検索」の弱みを補い、回答精度を向上するための手法です。BlackRockとNVIDIAの研究者らによって2024年8月に提案されました。 ベクトル検索の弱みはいくつかあります
株式会社ナレッジセンスは、生成AIやRAGを使ったプロダクトを、エンタープライズ向けに開発提供しているスタートアップです。本記事では、RAGの性能を高めるための「MoGG」という手法について、ざっくり理解します。 この記事は何 この記事は、社内用語が多く含まれるドキュメントでもRAGの性能を高くするための手法「MoGG」の論文[1]について、日本語で簡単にまとめたものです。 今回も「そもそもRAGとは?」については、知っている前提で進みます。確認する場合は以下の記事もご参考下さい。 本題 ざっくりサマリー MoGG(Mix-of-Granularity-Graph)は、RAGの精度を上げるための、新しいチャンク分割の手法です。MoGGでは、チャンクとグラフ構造を上手く組み合わせることで、専門用語・社内用語が多いドキュメントでも回答精度を向上させることができます。上海人工知能研究所と北京航空
★AIスキル人材と企業をつなぐマッチングサービス「AIDB HR」を開始しました!(プレスリリースはこちら) 仕事を探す方はこちら、人材を探す企業の方はこちらからご利用ください。 ★AIDB会員同士でコミュニケーションできるDiscordサーバーを運営しています! ログインの上、マイページをご覧ください。 マイページに保存最終更新日:2024/09/23 本記事は、研究者が自ら著書の論文を解説する特別企画です。AIDBの通常記事とは異なり、本企画の記事は会員以外のすべてのユーザーも全文閲覧できます。皆様ぜひお楽しみください。また、本企画への応募は以前からXで募集しており、これが3記事目の公開となります。本企画は継続開催中です。研究者の方はこちらからご応募ください。 今回は、東京大学のIrene Li氏ら研究グループによる”KG-Rank: Enhancing Large Language
Editor’s note, Apr. 2, 2024 – Figure 1 was updated to clarify the origin of each source. Perhaps the greatest challenge – and opportunity – of LLMs is extending their powerful capabilities to solve problems beyond the data on which they have been trained, and to achieve comparable results with data the LLM has never seen. This opens new possibilities in data investigation, such as identifying them
👉 Microsoft Research Blog Post 👉 GraphRAG Accelerator 👉 GitHub Repository 👉 GraphRAG Arxiv Figure 1: An LLM-generated knowledge graph built using GPT-4 Turbo. GraphRAG is a structured, hierarchical approach to Retrieval Augmented Generation (RAG), as opposed to naive semantic-search approaches using plain text snippets. The GraphRAG process involves extracting a knowledge graph out of raw text
皆様、こんばんは。 ストックマークでCMOをしております田中です。 ストックマーカーとしては3年が過ぎました。 ※だいぶグレーヘアーが目立つようになりました(白目) 起業→コンサル→事業開発→PMM→PO→CMOと、 役割は変わってきましたが、今日は生成AIの社会実装の話をします。 念のためですが、タイトルは誤植ではありません苦笑 本記事には次のことが書かれています。 ● Bizdev / Marketingとしてマーケットを読む難しさ ● 生成AIをプロダクトに活かす難しさ ● 生成AIの本質から見えるこれからの働き方 本記事は、こちらの読者をイメージして書きました。 ● スタートアップのBizdev/PMMの方、または目指されている方 ● 生成AIの社会実装を進めている方 それでは、早速お話していきましょう。 【前段の話】スタートアップのCMOの役割生成AIの社会実装の話をする前に、ス
こんにちは。ストックマークのリサーチャーの広田です。今日は私が新しく立ち上げた GraphRAG プロジェクトの仲間を募集するために、GraphRAG プロジェクトについて紹介したいと思います。 広田航 Researcher 大阪大学大学院情報科学研究科を卒業後、米国に渡り Megagon Labs で Conversational AI や entity matching の研究を行う。その後帰国しストックマークに参画。現在はナレッジグラフ構築や LLM を活用した情報抽出の研究を行う。 まず GraphRAG プロジェクトの背景を紹介したいと思います。 ストックマークは「価値創造の仕組みを再発明し人類を前進させる」というミッションを掲げ、「AIと人による新しい価値創造プロセスを発明する」を目指して Research Unit を組成しています。情報の量が急激に増えている現代において、情
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く