並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 3532件

新着順 人気順

自然言語の検索結果1 - 40 件 / 3532件

  • Python による日本語自然言語処理

    はじめに この文書は、 Steven Bird, Ewan Klein, Edward Loper 著 萩原 正人、中山 敬広、水野 貴明 訳 『入門 自然言語処理』 O'Reilly Japan, 2010. の第12章「Python による日本語自然言語処理」を、原書 Natural Language Processing with Python と同じ Creative Commons Attribution Noncommercial No Derivative Works 3.0 US License の下で公開するものです。 原書では主に英語を対象とした自然言語処理を取り扱っています。内容や考え方の多くは言語に依存しないものではありますが、単語の分かち書きをしない点や統語構造等の違いから、日本語を対象とする場合、いくつか気をつけなければいけない点があります。日本語を扱う場合にも

    • 258億語の日本語コーパスをウェブで公開~国立国語研究所 言語研究や自然言語処理技術開発での基礎資料

        258億語の日本語コーパスをウェブで公開~国立国語研究所 言語研究や自然言語処理技術開発での基礎資料
      • [速報]マイクロソフト、自然言語で誰でもアプリケーション開発が可能になる「Copilot in Power Automate」「Copilot in Power Apps」発表

        [速報]マイクロソフト、自然言語で誰でもアプリケーション開発が可能になる「Copilot in Power Automate」「Copilot in Power Apps」発表 マイクロソフトはローコードでスマートフォン用の業務アプリケーションを開発する「Power Apps」と、CRMなどの既存の業務アプリケーションを組み合わせて新たな業務アプリケーションを開発できる「Power Automate」にChatGPTベースのAIを組み込んだ「Copilot in Power Apps」および「Copilot in Power Automate」を発表しました。 いずれも自然言語でCopilotに作りたいアプリケーションの内容を伝えると自動的にアプリケーションが生成される機能を備えており、プログラマだけでなく、あらゆるビジネスマンがアプリケーションを開発できるようになると期待されます。 これ

          [速報]マイクロソフト、自然言語で誰でもアプリケーション開発が可能になる「Copilot in Power Automate」「Copilot in Power Apps」発表
        • 自然言語処理の最新手法"word2vec"で艦これ加賀さんから乳を引いてみる - あんちべ!

          概要 この記事は自然言語処理という分野の最新手法word2vec を利用して誰でも遊べるようにするための手順を説明するものです。 word2vecを利用すると意味の計算が実現できます。 例えば"king"から"man"を引いて"woman"を足すと"queen"が出てきたり、 "東京"から"日本"を引いて"フランス"を足すと"パリ"が出てくるという面白い手法です。 自然言語処理とは人間が日常的に用いる自然言語をコンピュータに処理させ、 翻訳や要約、文字入力支援や質問応答システムを作るなどに活用されている分野です。 自然言語処理と言うと耳慣れない言葉かもしれませんが、 実は検索や推薦などで私たちが日常的に利用しているなじみ深い技術でもあります。 自然言語処理の適用範囲や要素技術は幅広いのですが、 その中でもword2vecの特色は、 冒頭でも挙げたように「意味の計算」が出来ることです。 これ

            自然言語処理の最新手法"word2vec"で艦これ加賀さんから乳を引いてみる - あんちべ!
          • 入門 自然言語処理を禁書にすべき10の理由 | TRIVIAL TECHNOLOGIES on CLOUD

            みんなのIoT/みんなのPythonの著者。二子玉近く160平米の庭付き一戸建てに嫁/息子/娘/わんこと暮らしてます。月間1000万PV/150万UUのWebサービス運営中。 免責事項 プライバシーポリシー 「入門 自然言語処理」はヤバい書籍なので禁書にすべきだ。 タイトルは釣りじゃない。その理由を10個挙げる。 自然言語処理のかなり基本的なことからそこそこ高度なことについて解説されてあり,自然言語処理について理解が深まり過ぎる ボリュームがあるのに書き方が平易でついつい読みふけってしまう 演習問題があり,自分の理解度を確かめられたりするのもケシカラン 原著は欧米語のための言語処理について書かれた書籍なのに,日本語の形態素解析などについても解説してあって我慢できない 必要ライブラリのインストールなど環境構築に時間が取られそうでヤバい 書籍の応用でBotとか人工無能とか作ったらどうかな−,と

            • 東京大学深層学習(Deep Learning基礎講座2022)深層学習と自然言語処理

              東京大学深層学習(Deep Learning基礎講座2022)https://deeplearning.jp/lectures/dlb2022/ 「深層学習と自然言語処理」の講義資料です。

                東京大学深層学習(Deep Learning基礎講座2022)深層学習と自然言語処理
              • 自然言語処理における前処理の種類とその威力 - Qiita

                Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? **自然言語処理に前処理は不可欠です。**テキストは文字の羅列であり構造化されていないため、そのままでは処理するのが難しいです。特にWebテキストの中には HTMLタグ や JavaScript のコードといったノイズが含まれています。このようなノイズは前処理して取り除かなければ期待する結果は得られないでしょう。 出典: [Deep learning for computational biology](http://msb.embopress.org/content/12/7/878) 本記事では自然言語処理における前処理の種類とその

                  自然言語処理における前処理の種類とその威力 - Qiita
                • Python自然言語処理テクニック集【基礎編】

                  自分がよく使用する日本語自然言語処理のテンプレをまとめたものです。 主に自分でコピペして使う用にまとめたものですが、みなさんのお役に立てれば幸いです。 環境はPython3系、Google Colaboratory(Ubuntu)で動作確認しています。 Pythonの標準機能とpipで容易にインストールできるライブラリに限定しています。 機械学習、ディープラーニングは出てきません!テキストデータの前処理が中心です。 前処理系 大文字小文字 日本語のテキストにも英語が出てくることはあるので。 s = "Youmou" print(s.upper()) # YOUMOU print(s.lower()) # youmou 全角半角 日本語だとこちらのほうが大事。 全角半角変換のライブラリはいくつかありますが、自分はjaconv派。 MIT Licenseで利用可能です。 import jaco

                  • Python による日本語自然言語処理

                    はじめに この文書は、 Steven Bird, Ewan Klein, Edward Loper 著 萩原 正人、中山 敬広、水野 貴明 訳 『入門 自然言語処理』 O'Reilly Japan, 2010. の第12章「Python による日本語自然言語処理」を、原書 Natural Language Processing with Python と同じ Creative Commons Attribution Noncommercial No Derivative Works 3.0 US License の下で公開するものです。 原書では主に英語を対象とした自然言語処理を取り扱っています。内容や考え方の多くは言語に依存しないものではありますが、単語の分かち書きをしない点や統語構造等の違いから、日本語を対象とする場合、いくつか気をつけなければいけない点があります。日本語を扱う場合にも

                    • 自然言語処理技術を用いたはてなブックマークの新機能「トピック」をベータリリースしました - はてなブックマーク開発ブログ

                      こんにちは、はてなブックマークのディレクター id:jusei です。本日、はてなブックマークの新機能「トピック」をベータリリースしました。現在はPC版でのみご利用いただけます。スマートフォン版、iOSアプリ、Androidアプリでは順次対応していきます。 新機能「トピック」では、「人気エントリー」に掲載されている記事の中から関連性の高い記事をまとめ、さらにそれ以外の関連エントリーも含めて一覧できる「トピックページ」を生成します。各トピックの見出しは、自然言語処理技術を用いて自動生成しております。トピックページの生成対象は、過去10年間に蓄積されたはてなブックマークの全エントリーです。 2015年1月のトピック2005年2月のトピック トピックページには、ユーザーの皆さまの間で多く話題になっている記事を抜粋して表示する「ハイライト」、すべての記事を表示する「新着」の2つの表示モードがありま

                        自然言語処理技術を用いたはてなブックマークの新機能「トピック」をベータリリースしました - はてなブックマーク開発ブログ
                      • [速報]マイクロソフト、自然言語をプログラミング言語にAIで変換、新ノーコード機能をPower Appsに搭載。AI言語モデル「GPT-3」を採用。Microsoft Build 2021

                        [速報]マイクロソフト、自然言語をプログラミング言語にAIで変換、新ノーコード機能をPower Appsに搭載。AI言語モデル「GPT-3」を採用。Microsoft Build 2021 マイクロソフトは、オンラインで開催中の開発者向け年次イベント「Microsoft Build 2021」で、ローコード/ノーコード開発ツール「Power Apps」に、英語で説明すると自動的にその機能をプログラミング言語の「Power Fx」に変換してくれる新機能の搭載を発表しました。 Power FxはExcelの数式をベースにしたプログラミング言語で、今年の3月に発表されたばかりです。 参考:Excelの数式をベースにしたプログラミング言語「Microsoft Power Fx」登場。オープンソースで公開予定。Microsoft Ignite 2021 これによりプログラミングせずに、Power A

                          [速報]マイクロソフト、自然言語をプログラミング言語にAIで変換、新ノーコード機能をPower Appsに搭載。AI言語モデル「GPT-3」を採用。Microsoft Build 2021
                        • 自然言語処理をサービスで活用しよう! Sansanに学ぶ「多種多様なテキスト」からのデータ分析|ハイクラス転職・求人情報サイト AMBI(アンビ)

                          自然言語処理をサービスで活用しよう! Sansanに学ぶ「多種多様なテキスト」からのデータ分析 自然言語処理をサービスに投入し、“できること”とは?名刺管理サービス「Sansan」を提供するSansan社では、名刺に記載された情報のデータ化において、自然言語処理を徹底的に活用しています。同社のデータ統括部門DSOCで日夜研究を続ける奥田裕樹さんと高橋寛治さんの2人に、サービスの裏で動く、自然言語処理のユースケースを語っていただきました。 名前や企業名、電話番号、メールアドレス──。名刺のなかには、重要な個人情報がテキストの形で記載されています。 そういった情報や企業のWebページ情報などを解析し、ユーザーに有効活用してもらうべく研究開発を続けているのが、法人向けクラウド名刺管理サービス「Sansan」や個人向け名刺アプリ「Eight」を提供するSansan株式会社です。同社はいわば、日本で

                            自然言語処理をサービスで活用しよう! Sansanに学ぶ「多種多様なテキスト」からのデータ分析|ハイクラス転職・求人情報サイト AMBI(アンビ)
                          • 自然言語処理

                            • 東大松尾研究室、無料でディープラーニングや自然言語処理を学べる講座開講 松尾豊氏が講師を務める講座も | Ledge.ai

                              TOP > Article Theme > AI(人工知能)ニュース > 東大松尾研究室、無料でディープラーニングや自然言語処理を学べる講座開講 松尾豊氏が講師を務める講座も 東京大学 松尾研究室は1月29日から、無料でディープラーニング(深層学習)や自然言語処理について学べる、短期間のオンライン講座の受講者を募集している。対象は学生(大学院、大学、高専、専門学校生、高校、中学など)。募集は2月8日(月)の10時00分まで。選考結果は2月15日(月)までに受講決定者にメールで連絡する。 今回、募集しているオンライン講座は「スプリングセミナー2021:深層強化学習」「プリングセミナー2021:深層生成モデル」「プリングセミナー2021:Deep Learning for NLP講座」の3つ。なお、人工知能(AI)研究の第一人者で、東京大学 松尾研究室を率いる松尾豊氏は企画・監修だけではなく、

                                東大松尾研究室、無料でディープラーニングや自然言語処理を学べる講座開講 松尾豊氏が講師を務める講座も | Ledge.ai
                              • 自然言語処理ってなに?課題は? 研究者に聞く、エンジニアが学術論文を読み解くための技術 - エンジニアHub|若手Webエンジニアのキャリアを考える!

                                自然言語処理ってなに?課題は? 研究者に聞く、エンジニアが学術論文を読み解くための技術 多くのサービスに実装される自然言語処理ですが、そもそも一体どのような技術なのでしょうか?東京工業大学で研究にあたる、西川 仁助教に自然言語処理の歴史と現在。そしてどのような課題があるかをうかがい、さらにエンジニアが学術論文を読み解き、役立つ情報を手にするための手法も聞きました。 技術に関する最新の情報を得るための手段は様々ですが、“学術論文を読む”とは、その有力な手段の一つでしょう。しかし、数多くある論文から、自分の目的とする情報をいかに探し出し、いかに読むのが効率的なのでしょうか。そして、日頃から論文にふれる機会の多い研究者の方はどのように論文から情報収集を読み解いているのでしょうか。 今回お話をうかがったのは、自然言語処理研究のフロントランナーとして、東京工業大学に所属し、自動要約の研究をされている

                                  自然言語処理ってなに?課題は? 研究者に聞く、エンジニアが学術論文を読み解くための技術 - エンジニアHub|若手Webエンジニアのキャリアを考える!
                                • [速報]Google、自然言語でAIと対話するだけで誰でもアプリが作れる「Duet AI for AppSheet」発表。Google I/O 2023

                                  [速報]Google、自然言語でAIと対話するだけで誰でもアプリが作れる「Duet AI for AppSheet」発表。Google I/O 2023 Googleは5月10日(日本時間5月11日未明)、米カリフォルニア州マウンテンビューで開催中のイベント「Google I/O 2023」で、AIと自然言語で対話することでアプリケーションの開発ができる「Duet AI for AppSheet」を発表しました。 プログラミング不要でアプリケーションの開発が可能なため、誰でもアプリケーションが作れるようになります。これにより開発チームはより重要なアプリケーションの開発に集中できるようになると説明されています。 AIとチャットするだけでアプリケーションが完成 以下はDuet AI for AppSheetの紹介動画からの引用です。 AIとのチャットで、社内で出張申請を管理するためのアプリケー

                                    [速報]Google、自然言語でAIと対話するだけで誰でもアプリが作れる「Duet AI for AppSheet」発表。Google I/O 2023
                                  • 自然言語処理の前処理・素性いろいろ - Debug me

                                    ちゃお・・・† 舞い降り・・・† 先日、前処理大全という本を読んで自分なりに何か書きたいなと思ったので、今回は自然言語処理の前処理とそのついでに素性の作り方をPythonコードとともに列挙したいと思います。必ずしも全部やる必要はないので目的に合わせて適宜使ってください。 前処理大全[データ分析のためのSQL/R/Python実践テクニック] 作者:本橋 智光技術評論社Amazon 前処理 余分な改行やスペースなどを除去 with open(path) as fd: for line in fd: line = line.rstrip() アルファベットの小文字化 text = text.lower() 正規化 (半角/全角変換などなど) import neologdn neologdn.normalize('ハンカクカナ') # => 'ハンカクカナ' neologdn.normalize

                                      自然言語処理の前処理・素性いろいろ - Debug me
                                    • ChatGPT と自然言語処理 / 言語の意味の計算と最適輸送

                                      「Workshop OT 2023 最適輸送とその周辺 – 機械学習から熱力学的最適化まで」で用いたスライドです

                                        ChatGPT と自然言語処理 / 言語の意味の計算と最適輸送
                                      • 「Pulumi AI」発表。自然言語でAWS、Azure、Cloudflare、Kubernetes、Datadogなど130以上のインフラやサービスのInfra-as-Codeを自動生成

                                        「Pulumi AI」発表。自然言語でAWS、Azure、Cloudflare、Kubernetes、Datadogなど130以上のインフラやサービスのInfra-as-Codeを自動生成 クラウドをはじめとするITインフラの構成をコードで定義する、いわゆるInfrastructure as Codeツール「Pulumi」を提供するPulumi社は、自然言語からインフラ構成コードを自動生成する「Pulumi AI」を含む、AIを活用した新サービス群「Pulumi Insights」を発表しました。 Exciting news! Pulumi Insights - intelligence for cloud infrastructure – is here. We’ve tapped into the power of generative AI and GPT-4 to automate

                                          「Pulumi AI」発表。自然言語でAWS、Azure、Cloudflare、Kubernetes、Datadogなど130以上のインフラやサービスのInfra-as-Codeを自動生成
                                        • 自然言語処理における畳み込みニューラルネットワークを理解する · けんごのお屋敷

                                          最近、畳み込みニューラルネットワークを使ったテキスト分類の実験をしていて、知見が溜まってきたのでそれについて何か記事を書こうと思っていた時に、こんな記事をみつけました。 http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp 畳み込みニューラルネットワークを自然言語処理に適用する話なのですが、この記事、個人的にわかりやすいなと思ったので、著者に許可をもらって日本語に翻訳しました。なお、この記事を読むにあたっては、ニューラルネットワークに関する基礎知識程度は必要かと思われます。 ※日本語としてよりわかりやすく自然になるように、原文を直訳していない箇所もいくつかありますのでご了承ください。翻訳の致命的なミスなどありましたら、Twitterなどで指摘いただければすみやかに修正します。 以下

                                            自然言語処理における畳み込みニューラルネットワークを理解する · けんごのお屋敷
                                          • 自然言語処理と深層学習の最先端

                                            第4回 JustTechTalk の発表資料

                                              自然言語処理と深層学習の最先端
                                            • 自然言語処理を活用したwebサービスをつくるときに参考になる5冊の書籍 - EchizenBlog-Zwei

                                              自然言語処理を活用したwebサービス開発に関わって5年以上経った。いい機会なのでこれまでを振り返って役に立ったと思う5冊をメモしておく。 1.珠玉のプログラミング―本質を見抜いたアルゴリズムとデータ構造 まずはこれ。有名な本なので知っている人も多いと思う。簡単に説明するとちょっと前に「フェルミ推定」という名前で流行ったような、データから必要な数値を概算する方法や、問題が起きたときに問題点がどこにあるのか?最小の労力で解決するにはどこをいじればよいのか?などが書いてある。「webサービスで自然言語処理だ!」というと無限に夢が広がりがちなので、どういうデータが使えるのか、それをどういう形にもっていけばイケてるサービスになるのか、それはどのくらいの期間で実現できるか、ということを考える必要がある。そういうわけで本書は真っ先に読むべき一冊なのでは(余談だけれど、以前M << Nなデータに対してO(

                                                自然言語処理を活用したwebサービスをつくるときに参考になる5冊の書籍 - EchizenBlog-Zwei
                                              • 自然言語処理は Python がいちばん - 武蔵野日記

                                                現在大学1年生の人で3年後には NAIST に (というか松本研に) 来たいという人から「どんなプログラミング言語やっておくといいですか」と質問されたりするのだが、なかなか答えるのは難しい。自分は Perl → Python がメインでときどき C++/C# を使ったりするのだが、どれが一番いいかはなんとも言えないので、自然言語処理以外に転向する可能性も考えると、C とか C++ とか Java とか(授業でそちらをやるのであれば)を最初の武器に選んだ方がいいのでは、と思ってはいる。 そんなこんなで最近 Hal Daume III (機械学習を用いた自然言語処理では非常に有名な人) のブログで Language of Choice というタイムリーなエントリーが出ていたので、紹介すると、「それなりに大きな自然言語処理のプロジェクトでどのプログラミング言語を使うのか」というアンケート結果が出

                                                  自然言語処理は Python がいちばん - 武蔵野日記
                                                • ついに明かされる「りんな」の“脳内” マイクロソフト、「女子高生AI」の自然言語処理アルゴリズムを公開

                                                  日本マイクロソフトは都内で開いた開発者向けイベント「de:code 2016」で、同社が独自に開発する“女子高生AI”「りんな」の自然言語処理アルゴリズムの詳細を語った。りんなのアルゴリズムのキモは「ランク付け」だという。自然な“女子高生らしさ”を生み出している秘密とは? りんなは2015年7月にLINEアカウントとして登場し、同年12月にはTwitterアカウントも開設。「マジで?!やば!」など“日本の女子高生”をイメージした受け答えができるのが特徴で、現在LINEとTwitterを合わせて340万人以上のユーザーと会話しているという。 Microsoftが開発しているAIとして「Cortana」がよく引き合いに出されるが、Cortanaのコンセプトが「Productivity」(生産性向上)であるのに対し、りんなのコンセプトは「Emotional」(感情的)。例えば、「明日晴れるかなぁ

                                                    ついに明かされる「りんな」の“脳内” マイクロソフト、「女子高生AI」の自然言語処理アルゴリズムを公開
                                                  • 自然言語処理に新風を巻き起こしたWord2Vecとは何か - 日経BigData

                                                    言語データの分析と応用のために自然言語処理と呼ばれる分野で長年研究が行われて来た。同分野が昨年から大きく沸き立っている。米グーグルの研究者であるトマス・ミコロフ氏らが提案した手法「Word2Vec」が、いくつかの問題について従来のアルゴリズムよりも飛躍的な精度向上を可能にしたのだ。 この手法によって得られるベクトル空間には、今まで定量的に捉えることの難しかった言葉の「意味」を極めて直接的に表現しているかのような性質が認められている。今年9月、当社がスポンサー参加した自然言語処理系の研究発表会「NLP若手の会 第9回シンポジウム」でも、多くの研究がWord2Vecに関連したテーマについて取り上げていた。今後、意味解析、文書分類、機械翻訳など様々な分野でWord2Vecの応用が期待されている。 「意味ベクトル」の驚異的な性質 Word2Vecは、その名前の表す通り、単語をベクトル化して表現する

                                                      自然言語処理に新風を巻き起こしたWord2Vecとは何か - 日経BigData
                                                    • [速報]GitHub、自然言語による指示だけでアプリケーションを生成する「GitHub Spark」テクニカルプレビュー公開

                                                      [速報]GitHub、自然言語による指示だけでアプリケーションを生成する「GitHub Spark」テクニカルプレビュー公開 GitHubは、日本時間10月30日未明に開幕したイベント「GitHub Universe'24」で、自然言語による指示だけで、パーソナライズされた小規模なアプリケーション(Micro-App)をすぐに生成できる「GitHub Spark」の テクニカルプレビューを発表しました 。 下記はGitHub Sparkのデモとして公開された動画の一部をキャプチャしたものです。 例えばユーザーは、ダッシュボードから「An app for me to log all the cities I've travelled with a review and star rating」(これまで旅行したことのあるすべての都市のレビューと星の数での評価を記録するアプリ)のように、作りた

                                                        [速報]GitHub、自然言語による指示だけでアプリケーションを生成する「GitHub Spark」テクニカルプレビュー公開
                                                      • 自然言語処理を自習したくなったら参考になりそうなサイトなど - 鴨川にあこがれる日々

                                                        雑にですが,知ってるサイトやチュートリアルをまとめたくなったのでまとめてみました.夏ですし. 適宜更新しています. 最終更新 2018年02月03日 チュートリアル 言語処理100本ノック 言語処理100本ノック 2015 東工大の岡崎先生が作られたチュートリアルです. 他大学の研究室でも利用されています. 簡単な内容からはじまるので,プログラミングの導入としてもいいと思います. NLPプログラミングチュートリアル Graham Neubig's Teaching Carnegie Mellon UniversityのGraham Neubig先生のチュートリアルです. Githubにサンプルコードが公開されています. 各チュートリアルにはテストがついているので,実装が正しいかを確かめることができます. 扱っているトピックが広いので,かなり勉強になると思います. ソフト 形態素解析器 日本

                                                          自然言語処理を自習したくなったら参考になりそうなサイトなど - 鴨川にあこがれる日々
                                                        • 生成AIに疑似コードで指示すると自然言語よりも効率的にプログラムが生成できるというアイデアから生まれた、生成AI用の疑似言語「SudoLang」

                                                          生成AIに疑似コードで指示すると自然言語よりも効率的にプログラムが生成できるというアイデアから生まれた、生成AI用の疑似言語「SudoLang」 ChatGPTやCopilotなどの生成AIを用いてコードを生成しようとすると、多くの場合プロンプトを自然言語で書くことになるでしょう。 しかし自然言語で的確にプログラムの内容を表現するのは、ときに面倒だったり、あいまいさを排除することが難しかったりします。 一方で、プログラマが自分でコードを書こうとするとき、あるいは他のプログラマとコードの内容を議論するときに、自然言語をプログラミング言語のような構文で書く、いわゆる「擬似コード」を使うことがよくあります。 例えばこんな風に自然言語をコードっぽくホワイトボードに書いたことのあるプログラマの方は多いのではないでしょうか? 入力値を処理するための関数(A、B){ Aは数字かどうか確認する Bは日付か

                                                            生成AIに疑似コードで指示すると自然言語よりも効率的にプログラムが生成できるというアイデアから生まれた、生成AI用の疑似言語「SudoLang」
                                                          • 大自然言語時代のための、文章要約 - Qiita

                                                            Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? さまざまなニュースアプリ、ブログ、SNSと近年テキストの情報はますます増えています。日々たくさんの情報が配信されるため、Twitterやまとめサイトを見ていたら数時間たっていた・・・なんてこともよくあると思います。世はまさに大自然言語時代。 *from [THE HISTORICAL GROWTH OF DATA: WHY WE NEED A FASTER TRANSFER SOLUTION FOR LARGE DATA SETS](https://www.signiant.com/articles/file-transfer/the-

                                                              大自然言語時代のための、文章要約 - Qiita
                                                            • 都立大 自然言語処理研究室 - 自然言語処理を学ぶ推薦書籍

                                                              自然言語処理を学ぶ推薦書籍を紹介します。2021年03月現在、自然言語処理を勉強したい理工系の学生・エンジニアの人は、以下の本を推薦します。 (概要)自然言語処理(放送大学出版) (理論)言語処理のための機械学習入門+深層学習による自然言語処理 (実装)Python 機械学習プログラミング 第3版 自然言語処理を勉強したい、非理工系・非エンジニアの人には、以下の本を推薦します。 (数式なし)自然言語処理の基本と技術 (数式あり)自然言語処理(放送大学出版) オライリーから出ている「入門 自然言語処理」は特殊な本(詳しい人がこれを使ってレクチャーしてくれるならともかく、独習に向いていない)で、Python 2 で書かれているだけでなく、すでに動かなくなったコードも多々あり、2019年時点では読まない方がいい本です。(それでもどうしても、意地でも読みたい人は、本家にある Python 3 対応

                                                              • 『自然言語処理の基本と技術』が面白い! - toricago

                                                                スマートスピーカーが日本で急速な普及を迎えている。Amazon Echo、Google Home、LINE WAVEなどを購入し、スマートスピーカーの様々可能性を楽しんでいる読者も多いかもしれない。何かを話しかけることで、アラーム・ストップウォッチ設定やLINEメッセージの読み上げなど、何らかのタスクを実行してくれたり、天気や時間、さらにはニュースなどの情報を提供してくれたり、簡単な会話を楽しむこともできる。 今まで慣れ親しんできたPCのキーボードやスマホのタッチインターフェースとは異なる「音声インターフェース」は新鮮に感じるが、背景では様々な技術が動いている。入り口は声を認識する音声認識だが、その次のステップでは認識した文字列を文章として理解し、スピーカー側として何を実行すればよいのか判断しなければならない。何かを聞かれているのであれば、どのように返答すべきかを考えなければならない。この

                                                                  『自然言語処理の基本と技術』が面白い! - toricago
                                                                • Perl で自然言語処理

                                                                  2. 私(佐藤敏紀)の自己紹介名前:佐藤敏紀(さとうとしのり)ID : overlast(Twitter : @overlast)key : 自然言語処理/機械学習/検索/圧縮/順序学習blog : Overlasting::Life(http://diary.overlasting.net/) 略歴2005年4月〜2008年3月:東工大の奥村研究室自然言語処理(比較関係抽出)の研究2008年5月〜:某大手ポータルサイト自然言語処理・機械学習技術をWeb文書に応用類似文字列検索ライブラリの研究・開発スペル訂正システムの研究・開発2

                                                                    Perl で自然言語処理
                                                                  • 自然言語処理にはやっぱりPythonがいちばん - nokunoの日記

                                                                    Quoraで「自然言語処理に適したプログラミング言語はどれか?」という質問をしたところ,やっぱりPythonが一番人気のようです.What programming language is suitable for natural language processing? - Quora理由として以下が挙げられていますNLTKがあるから正規表現ライブラリ(re)が強力だからnumpyとscipyがあるから スクレイピングにBeautifulSoupやScrape.pyが使えるから Django / Pylons / TornadoのようなWebフレームワークがあるから また,機械学習のライブラリを言語別にまとめた質問もありました.こちらもJava, Python, Rが多いですね.Which programming language has the best repository of ma

                                                                    • 「せっかく記号を使った形式手法があるのに自然言語に戻るのか」というツイート - tkgshn

                                                                      それはそうと、軽量な形式手法たる型システム含む形式手法は記号の世界の中での正気はちゃんと証明してくれるが、人間様が頭を捻って作られた、自然言語で書かれた仕様とやらは一体何の正気を保証してくれるんだろう

                                                                        「せっかく記号を使った形式手法があるのに自然言語に戻るのか」というツイート - tkgshn
                                                                      • Google、自然言語理解(NLU)の基礎となる「SyntaxNet」をオープンソース化

                                                                        米Googleは5月12日(現地時間)、機械学習システム「TensorFlow」に統合されたニューラルネットワークフレームワーク「SyntaxNet」をオープンソースで公開したと発表した。GitHubで公開されている。 自然言語理解(NLU)システムの基礎を提供するものという。SyntaxNetには、新たなモデルに学習させるのに必要なすべてのコードと、英語の文章の構文解析のためにGoogleが開発した英文解析ツールの「Parsey McParseface」が含まれる。 Parsey McParsefaceは、言語構造解析方法を学習する強力な機械学習アルゴリズム上に構築されており、文章内の各ワードの機能的役割(動詞、形容詞など)を解析できるという。Parsey McParsefaceは世界で最も正確な構文解析ツールだとGoogleは説明する。 コンピュータにとって、人間の話す自然言語はあまり

                                                                          Google、自然言語理解(NLU)の基礎となる「SyntaxNet」をオープンソース化
                                                                        • いちいちシェルコマンド思い出せないので、ChatGPTで自然言語からスクリプトを生成するツールつくった - Qiita

                                                                          いちいちシェルコマンド思い出せないので、ChatGPTで自然言語からスクリプトを生成するツールつくったPythonOpenAIChatGPTlangchain はじめに ChatGPT APIが出たので早速さわってみました。せっかくなので何か便利なものをということで自分向けに使えそうなツールをつくっていたら 良いかんじに動作したのでご紹介します。 つくったものは、「ChatGPTを用いた自然言語によるシェルコマンドランチャー」です。百聞は一見にしかずと言うことでまずは動作するところをみてください。 概要 wannaコマンドは、ChatGPTを用いた自然言語によるシェルコマンドランチャーです。自然言語によって、bash scriptを生成し、名付けし、管理できます。 コマンドライン上での操作は簡単に多くのことを行うことができるため、非常に便利です。しかし、多くのコマンドやオプションの組み合わ

                                                                            いちいちシェルコマンド思い出せないので、ChatGPTで自然言語からスクリプトを生成するツールつくった - Qiita
                                                                          • マイクロソフト、ソースコードをAIが読み込んで自然言語で説明してくれる「Copilot Explain」を開発中。GitHub Copilotは今夏に正式サービスへ。Microsoft Build 2022

                                                                            マイクロソフト、ソースコードをAIが読み込んで自然言語で説明してくれる「Copilot Explain」を開発中。GitHub Copilotは今夏に正式サービスへ。Microsoft Build 2022 マイクロソフトは現在開催中の開発者向けイベント「Microsoft Build 2022」で、ソースコードの内容をAIが自然言語で説明してくれる「Copilot Explain」の開発を進めていることを明らかにしました。 AIが説明してくれることで、そのソースコードについてまだ詳しい内容を把握していないプログラマによるコードの修正やデバッグ作業などの効率化がはかれるとしています。 AIが自然言語の説明とコードの関係を学習 GitHub Copilotでは、人間のプログラマがペアプログラミングの相手であるAIに対してこれから書こうとしているコードの意図を説明するために、まずコメントを記述

                                                                              マイクロソフト、ソースコードをAIが読み込んで自然言語で説明してくれる「Copilot Explain」を開発中。GitHub Copilotは今夏に正式サービスへ。Microsoft Build 2022
                                                                            • 【重要】日本語形態素解析・自然言語理解API V2 リリースのお知らせ - Yahoo!デベロッパーネットワーク

                                                                              いつもテキスト解析Web APIをご利用いただきありがとうございます。 テキスト解析Web APIにおける一部APIの後継バージョン(V2)リリースと仕様変更についてお知らせいたします。 ■ 対象API 日本語形態素解析 自然言語理解 ■ 変更箇所 リクエストURLが変わります GETリクエストは廃止となり、POSTリクエストのみになります リクエストパラメータが変わります(一部パラメータが廃止されます) レスポンス形式・フィールドが共に変更になります V2の仕様の詳細につきましては以下のページをご覧ください。 日本語形態素解析 自然言語理解 V1終了予定時期につきましては2022年11月末を予定しております。 ご迷惑をおかけしますが、なにとぞご了承ください。 今後ともテキスト解析Web APIをよろしくお願いいたします。

                                                                                【重要】日本語形態素解析・自然言語理解API V2 リリースのお知らせ - Yahoo!デベロッパーネットワーク
                                                                              • 自然言語を簡単に可視化・分析できるライブラリ「nlplot」を公開しました - ギークなエンジニアを目指す男

                                                                                こんにちは。たかぱい(@takapy0210)です。 本日は自然言語の可視化を手軽にできるようにしたパッケージnlplotをPyPIに公開したので、これのご紹介です。 nlplotとは? nlplotで何ができるか 使い方 使用データ 事前準備 ストップワードの計算 N-gram bar chart N-gram tree Map Histogram of the word count wordcloud co-occurrence networks sunburst chart まとめ nlplotとは? 自然言語の基本的な可視化を手軽にできるようにしたパッケージです。 現在は日本語と英語で動作確認済みです。 基本的な描画はplotlyを用いているため、notebook上からインタラクティブにグラフを操作することができます。 github.com (スター★お待ちしております🙇‍♂️)

                                                                                  自然言語を簡単に可視化・分析できるライブラリ「nlplot」を公開しました - ギークなエンジニアを目指す男
                                                                                • DeepMindが自然言語理解の2難題を解決した - mabonki0725の日記

                                                                                  ランニングできず 英語30分 The Boune Leagacy (1) DeepMindの自然言語を理解するUNREALモデルの論文を読み、深い感動を覚える。 このモデルは自然言語理解に於ける2つの懸案事項を解決している。 ・計算機が言語を教える事を可能にした。 言語理解で正解すれば計算機がエージェントに報酬を与えることで、 数十万の繰り返し学習を可能にした。従来は人間が計算機に教えるしかなく、 試行回数の壁があった。 ・複雑な文章理解では、単純な文章学習を経ていけば可能になることを実証した DeepMindの証明したかったことは以上の3点である ・言語理解を解明するには、人間の環境に似た3要素の模擬環境が必要 ・動作できるエージェント ・エージェントが存在する3D環境 ・報酬と罰則 ・言語学習には相当な繰り返しが必要 ・複雑理解では適切な学習手順が必要

                                                                                    DeepMindが自然言語理解の2難題を解決した - mabonki0725の日記