並び順

ブックマーク数

期間指定

  • から
  • まで

161 - 200 件 / 509件

新着順 人気順

svmの検索結果161 - 200 件 / 509件

  • LLMで自動運転車を動かしてみた話|aoshun7

    こんにちは、自動運転EVをつくるTuring(チューリング)株式会社で共同創業者CTOをやっている青木俊介です。 先日Turingは噂のLLM(Large Language Model:大規模言語モデル)で自動運転車を動かすプロジェクトを完遂させました。 上の動画にもあるように、今回開発したデモではユーザ(乗客)が音声で指示を出すと、LLMが裏で動き、自動運転車がユーザの指示に従って動いてくれます。LLMで実際の自動車が動いたのは世界初な気がします。 もちろんこのシステムで公道を走るわけではないのですが、我々Turingの開発思想的には非常に重要なデモでした。 この記事では「なぜTuringがLLMで自動運転車を動かしたのか」「実際どんな風にLLMで自動運転車が動いているのか」「Turingの開発体制の今後」について書いていこうと思います。 1. LLMと自動運転とTuring「LLMで自

      LLMで自動運転車を動かしてみた話|aoshun7
    • いまさら勉強する人工知能|深津 貴之 (fladdict)

      ・ネットを巡回して、いろいろなハックしてる人のブログや論文を100個ぐらい読む。 ・親切なPFNの人にお時間もらって、謎だった部分や、自分なりにたてた仮説のコンセプトをきいてもらう。 ・Udemyがちょうどセールをしてたので、AI系のクラスを3万円分購入(総額20万円相当)。2倍速でざっくり見る。 …だいたいこんな感じの3週間。数学が難しすぎて、わからないこともいっぱい。ただ頭のなかでe4eエンコーダやpix2pix的に、概念モデルのエンコーダーを作れば、数式なしでもいける感はあった。 総論としてはAIは面白いですね、ロケットサイエンスと別の方向性で「言語化されてない職人芸のアート領域」があり、ここを抑えることができれば、最先端の発見や成果は色々とうまってそうという印象を受けました。 とりあえずStyleGan2で基礎勉強をしながら、BigGan、VQGanとProblematic Dif

        いまさら勉強する人工知能|深津 貴之 (fladdict)
      • 速度の高みを目指す:高速な単語分割器 Vaporetto の技術解説 - LegalOn Technologies Engineering Blog

        こんにちは。LegalForce Research でエンジニアをしている赤部 (@vbkaisetsu) です。 今回は、弊チームが開発した新しい高速な単語分割器 Vaporetto(ヴァポレット)の技術解説を行います。Vaporetto はプログラミング言語 Rust で開発されています。想定する読者は、 自然言語処理のアルゴリズムに興味がある人 Rust によるプログラミングに興味がある人 です。 単語分割器 Vaporetto はオープンソースソフトウェアであり、ソースコードは以下のリポジトリで公開しています。 https://github.com/legalforce-research/vaporetto Vaporetto という名前は、イタリアのヴェネツィアで運行されている水上バスから取りました。 ヴェネツィアの様子。写真右端の黄色いラインの入った建物がヴァポレットの乗り場。

          速度の高みを目指す:高速な単語分割器 Vaporetto の技術解説 - LegalOn Technologies Engineering Blog
        • AI企業が考察するGoogle翻訳超え機械翻訳「DeepL」のスゴさ | Ledge.ai

          サインインした状態で「いいね」を押すと、マイページの 「いいね履歴」に一覧として保存されていくので、 再度読みたくなった時や、あとでじっくり読みたいときに便利です。

            AI企業が考察するGoogle翻訳超え機械翻訳「DeepL」のスゴさ | Ledge.ai
          • 機械学習を「社会実装」するということ / Social Implementation of Machine Learning

            機械学習を「社会実装」する際に待ち受けている罠と、その解決方法の考察です。 ※この資料は、東京大学グローバル消費インテリジェンス寄附講座(GCI)2020 Summerの講義で使用したものです。 https://gci.t.u-tokyo.ac.jp/gci-2020-summer/ ※2…

              機械学習を「社会実装」するということ / Social Implementation of Machine Learning
            • Elicit | The AI Research Assistant

              Automate time-consuming research tasks like summarizing papers, extracting data, and synthesizing your findings.

                Elicit | The AI Research Assistant
              • Kaggleランカーの9人に聞いた、2020年面白かったコンペ9選と論文9選 | 宙畑

                9名のKagglerの方にアンケートにご協力いただき、2020年に面白かったコンペと論文を教えていただきましたのでその結果を紹介します。 2020年も数多くのデータ解析コンペが開催され、興味深い論文が多く発表されました。 昨年公開した「Kaggle上位ランカーの5人に聞いた、2019年面白かったコンペ12選と論文7選」は現時点で20,000人を超える方にご覧いただき、Kaggleを始めとするデータ解析コンペへの関心が非常に高まっていると感じました。 そして本年も9名のKagglerの方にアンケートにご協力いただき、2020年に面白かったコンペと論文を教えていただきましたのでその結果を紹介します。 (1)回答いただいたKaggler9名のご紹介 まずは今回のアンケートに回答いただいたのは以下9名のKagglerの方です。 aryyyyyさま(@aryyyyy221) カレーちゃんさま(@cu

                  Kaggleランカーの9人に聞いた、2020年面白かったコンペ9選と論文9選 | 宙畑
                • 機械学習/ディープラーニングの「数学」が学べるオススメ本

                  機械学習やディープラーニングに必要な数学項目をピックアップし、そういった項目を教科書的~実践的にカバーしているオススメの「数学」本を紹介する。また中学~大学までの数学全体を学び直したい人向けの本も紹介。 連載目次 機械学習やディープラーニングを学んでいると、その内部の仕組みは計算式なので、やはりどこかしらで数式が出てくる。そこで数学の必要性を感じて本格的に学び始めるという人も少なくないだろう。 では、どのレベルから、どんな本で学べばよいのだろうか。これはケースバイケースで、あなたが大学生であれば大学レベルの本からスタートすればよいだろうが、大学から遠ざかって5年以上たつような社会人であれば、数学をもう少し基礎的なところから復習した方がいいかもしれない。 また、数学に10年以上のブランクがある場合、中学レベルの数学から部分的に記憶が欠落しているかもしれない。数学は積み上げ型の学問なので、一部

                    機械学習/ディープラーニングの「数学」が学べるオススメ本
                  • Stanford CS229: Machine Learning Full Course taught by Andrew Ng | Autumn 2018

                    Led by Andrew Ng, this course provides a broad introduction to machine learning and statistical pattern recognition. Topics include: supervised learning (gen...

                      Stanford CS229: Machine Learning Full Course taught by Andrew Ng | Autumn 2018
                    • MLOps: 機械学習における継続的デリバリとパイプラインの自動化 を翻訳してみた - Qiita

                      表1(翻訳者により追加) MLOpsにおいて、DevOpsから追加された項目 以下では,予測サービスとして機能するMLモデルのトレーニングと評価の代表的な手順を説明します. MLのためのデータサイエンスの手順 どのMLプロジェクトでも、ビジネスユースケースを定義して成功基準を確立した後、 MLモデルを本番環境にデリバリする過程には次の手順が含まれます。 これらの手順は手動で完了することも、自動パイプラインで完了することもできます。 データ抽出: MLタスクのさまざまなデータソースから関連データを選択して統合します。 データ分析: 探索的データ分析 (EDA) を 実行して、MLモデルの構築に使用可能なデータを把握します。 このプロセスにより、次のことが起こります。 モデルが期待するデータスキーマと特性を理解します。 モデルに必要なデータの準備と特徴量エンジニアリングを特定します。 データの

                        MLOps: 機械学習における継続的デリバリとパイプラインの自動化 を翻訳してみた - Qiita
                      • JVNVU#99619336: 勾配降下法を使用する機械学習モデルに、誤った識別をさせるような入力を作成することが可能な問題

                        勾配降下法を用いて学習させたモデルを用いた分類を行う場合に、任意の分類結果が得られるような入力を意図的に作成することが可能です。これは、Kumar et al. による攻撃分類では、perturbation attacks や adversarial examples in the physical domain に該当します。 攻撃対象のシステムに対して、攻撃者がデータの入力や出力の確認などを行うことができる余地が大きいほど、攻撃が成功する可能性は大きくなります。 また、学習プロセスに関する情報(教師データ、学習結果、学習モデル、テストデータなど)があれば、攻撃はより容易に行えるようになります。 現状では、数秒で攻撃できるものから何週間も必要になるものまで様々な事例が知られています。 本件はアルゴリズムの脆弱性であり、攻撃対象となるシステムにおいて機械学習の仕組みがどのように使われている

                        • ごちきか

                          ごちきか# NTTコミュニケーションズ イノベーションセンターでは、社会・産業DXのためのSmart World の一環として、時系列データ分析手法の研究開発、お客さまのデータ分析支援や社内データ分析人材育成を行っています。 ごちきか(gochikika) は、これら研究開発成果やデータ分析人材育成コンテンツをまとめたナレッジベースです。大別してメインコンテンツは以下の通りです。 分析: 主に製造業の時系列データを対象として、前処理からモデリングまで一連の基本的な分析手法をPythonコード付きで解説しています。 特集記事: 比較的新しめであったり難易度の高い手法や、私たちの取り組みを知ってもらうための学会発表資料が掲載されます。また一部未分類なコンテンツが格納されています。 私たちの研究開発成果は、同じくイノベーションセンターで開発しているノーコードAI開発ツールNode-AI に搭載さ

                            ごちきか
                          • 【記事更新】私のブックマーク「反実仮想機械学習」(Counterfactual Machine Learning, CFML) | 人工知能学会 (The Japanese Society for Artificial Intelligence)

                            Home » リソース » 私のブックマーク » 【記事更新】私のブックマーク「反実仮想機械学習」(Counterfactual Machine Learning, CFML) 反実仮想機械学習(Counterfactual Machine Learning, CFML)齋藤 優太(東京工業大学) はじめに機械学習の応用において,反実仮想(Counterfactual)─起こり得たけれども実際には起こらなかった状況─についての情報が得られるとうれしい場面が多くある.例えば,「今動いている推薦アルゴリズムを仮に別のアルゴリズムに変えたときにコンバージョン率はどれくらいになるだろうか?」や「あるユーザに仮にクーポンを与えた場合に離反率はどれくらい減少するだろうか?」などの実務現場でよくある問いに答えるためには,反実仮想についての情報を知る必要がある. 反実仮想機械学習(CFML)とは,因果効果

                            • 人工知能規制、資本主義批判、民主主義再考

                              人工知能規制、資本主義批判、民主主義再考 2023.05.22 Updated by yomoyomo on May 22, 2023, 18:58 pm JST 先週、米上院の公聴会に召喚されたOpenAIのサム・アルトマンCEOが、「AIに規制は必要」と発言したことが話題になりました。ディープラーニング分野に多大な貢献をしたAI研究の第一人者であるジェフリー・ヒントンが、Googleを退社して「AIは人類の脅威になる」と警鐘を鳴らすのと合わせ、今のAIを巡る報道には不安をかきたてる浮足立った空気があります。 冷静に考えれば、AI開発を免許制にすべきという規制を求めるサム・アルトマンの発言は、オープンソースによるコモディティ化を牽制しながら、市場で優位性を確保したところで規制を求めるルールメイキング戦略の定石に沿ったもので、要は現状の優位性の定着が目的であり、驚くところはありません。 た

                                人工知能規制、資本主義批判、民主主義再考
                              • 機械学習でなんとかしようと安易に考えるな - Qiita

                                世の中にはよい機械学習の結果が存在する。高い精度で推論(分類・検出)できるものがある。 だから、データの特性が、元々の想定から変わった時にも「機械学習だから、学習させればなんとかなるよね」と期待する人がいるかもしれない。 この文章は、そのような安易な考え方に立つことを戒めるために書く。 (もちろん、機械学習は今までになかった価値をいろんな分野にもたらす可能性が極めて高い。) (主張したいことは、 ビジネスとして見返りが期待できる内容の機械学習をすること。 100%の精度が期待できる機械学習は、そんなに多くない。それでも見返りが期待できる使い方をしてほしい。 1人のエンジニアに支援なしに丸投げするのではなく、チームとしての支援が有効であること。 最初の問題設定を疑ってかかること。手書き文字認識の強化で宅配便の伝票をなんとかするよりは、手書きを必要としない方がいい。 ) garbage in

                                  機械学習でなんとかしようと安易に考えるな - Qiita
                                • 2021年05月時点で自分が実践している MLOps の情報収集方法

                                  2021-05-29 先日、同僚に「機械学習プロジェクトに興味があるんだけど、おすすめの資料があったら教えてほしい」と言われたので、Blog 記事に現時点でのおすすめの資料としてまとめておいたら、数年後見返したら面白そうだと思ったので記事として公開しておく。 おすすめの資料プロジェクトマネジメントや考え方、思想How Google does Machine Learningこれは機械学習を実応用する人たちにはぜひ見てほしいビデオ講義。前半が、機械学習プロジェクトの計画や、優先順位、よくあるアンチパターンについて GCP で機械学習について多く関わってきたエンジニアが解説してくれていて、非常に勉強になる。 感想記事リーン・スタートアップ ムダのない起業プロセスでイノベーションを生みだす顧客が求めるものを作ろう。機械学習にこだわったらまずだめなので… (詳しくは後述の Rules of ML

                                    2021年05月時点で自分が実践している MLOps の情報収集方法
                                  • SuikaというPure Rubyな形態素解析器を作成した - 洋食の日記

                                    はじめに Pure Rubyな形態素解析器Suikaを作成した。開発中でバッリバリにα版だが、思い切ってリリースすることにした。 suika | RubyGems.org | your community gem host 最も有名な形態素解析器であるMeCabもそうだが、形態素解析器は食べ物の名前がつくことが多い。「Rubyなので赤い食べ物が良いかな」と考えて、文字数とかわいらしさからSuika(スイカ)とした。 使い方 SuikaはPure Rubyで作られているため、MeCabをはじめ特別なライブラリを別途インストールする必要はない。 gem install suika バッリバリにα版なので、機能はないに等しく、オプションなしのMeCabコマンドと同様となる。 $ irb irb(main):001:0> require 'suika' => true irb(main):002:

                                      SuikaというPure Rubyな形態素解析器を作成した - 洋食の日記
                                    • 巡回セールスマン問題(TSP)の面白いと思った応用3例(色・単語・音楽) - Qiita

                                      巡回セールスマン問題 巡回セールスマン問題(以下TSP)についてご存知でしょうか。 完全グラフと全ての辺の移動コストが与えられた上で、全ての点を1回ずつ通り、始点に戻る巡回路の中で総移動コストが最小となる巡回路を求める組合せ最適化の問題です。 今回の記事の趣旨とは異なるため、ソルバーの詳細及びTSPを解くアルゴリズムの紹介は他の文献に譲ります。(個人的には辺の移動コストが定数でないTSP (dynamic TSP)にも興味があるので追ってまとめたいと思います。実応用としては、渋滞が発生して移動時間が変わる等の状況を考慮することに相当します。) TSPの応用としてはその名についているように人が全ての与えられた場所の集合を回る、郵便物などの配送*やテーマパークで回る順番を考える問題が多いかと思いますが、それらの実空間で何かの対象物が移動する以外の面白いなと思った応用例について3つ紹介して行きた

                                        巡回セールスマン問題(TSP)の面白いと思った応用3例(色・単語・音楽) - Qiita
                                      • Papers with Code - Machine Learning Datasets

                                        CIFAR-10 (Canadian Institute for Advanced Research, 10 classes) The CIFAR-10 dataset (Canadian Institute for Advanced Research, 10 classes) is a subset of the Tiny Images dataset and consists of 60000 32x32 color images. The images are labelled with one of 10 mutually exclusive classes: airplane, automobile (but not truck or pickup truck), bird, cat, deer, dog, frog, horse, ship, and truck (but no

                                          Papers with Code - Machine Learning Datasets
                                        • 「線形回帰」「決定木」「SVM」「k平均法」「アプリオリ法」とは? 機械学習の5大アルゴリズム

                                          ダウンロードはこちら 目的や分析するデータの内容によって、選択すべき機械学習アルゴリズムは変わる。例えば製品管理に適したアルゴリズムと、売り上げ予測に適したアルゴリズムは同じとは限らない。アルゴリズムの真価を引き出すには、事前に目的を明確にすることと、各アルゴリズムの特徴を理解することが必要だ。 本資料は、代表的な5つの機械学習アルゴリズム「線形回帰」「決定木」「SVM」「k平均法」「アプリオリ法」のそれぞれの仕組みと、適する用途を説明する。最適なアルゴリズム選びの一助となれば幸いだ。 プレミアムコンテンツのダウンロードはこちら

                                            「線形回帰」「決定木」「SVM」「k平均法」「アプリオリ法」とは? 機械学習の5大アルゴリズム
                                          • 画像化したテキストから直接翻訳する全く新しいニューラル機械翻訳モデルが登場【論文速報】

                                              画像化したテキストから直接翻訳する全く新しいニューラル機械翻訳モデルが登場【論文速報】
                                            • JX通信社における実践的MLOps

                                              3年でバックエンドエンジニアが5倍に増えても破綻しなかったアーキテクチャ そして、これから / Software architecture that scales even with a 5x increase in backend engineers in 3 years

                                                JX通信社における実践的MLOps
                                              • 深層学習VS決定木:テーブルデータ分析の未来|PKSHA Delta

                                                深層学習の技術が著しく進歩した結果、コンピュータビジョンや自然言語処理、音声信号処理などの分野では深層学習モデルの性能が古典的な手法のを大きく上回っており、すでにスタンダードなアプローチになっています。 しかし、テーブルデータを扱うタスクにおいては、深層学習の有効性は明らかになっていません。本記事では、AI Solution 事業部のアルゴリズムエンジニアよりテーブルデータにおける従来手法と深層学習の比較論文のご紹介をしていきます。 背景近年、テーブルデータを扱う深層学習モデルも登場し、一部の論文では決定木ベースのモデルと同等かそれ以上の性能を示しています。しかし、私が実務で試す中では決定木ベースのモデルの方が性能が高く、学習と推論が速く運用コストでも優れているため、深層学習モデル採用には至っていません。 より一般的なテーブルデータのタスクにおける、決定木ベースモデルと深層学習モデルとの性

                                                  深層学習VS決定木:テーブルデータ分析の未来|PKSHA Delta
                                                • 地下アイドル間の関連性をネットワークとして分析したり楽曲派を可視化したりしてみた話 - 蛇ノ目の記

                                                  地下アイドルアドベントカレンダー 12/16の記事です。メリークリスマス。 12/16の記事です。 12/16の( adventar.org 前回の更新から8ヶ月以上が経ってしまった。更新をサボっている間に名古屋に行ったり、大阪に行ったり、福島に行ったり、名古屋に行ったり、大阪に行ったり、名古屋に行ったり、名古屋に行ったり、大阪に行ったり、名古屋に行ったりしていた。さて今年は何回名古屋に遠征したでしょうか。名古屋は近所わかる。 アイドル現場まとめは、"その月に行った現場のまとめ"に留めないと持続可能性が低いと痛感。感想などを細かく書いていくとコストが大きくなりすぎてしまう。来年からはもっと簡素にまとめたい。 それでは本題始まります。 概要 Spotify Web APIを用いて「関連アーティスト(アプリ上では"ファンの間で人気"と表示される)」を取得し、地下アイドルの関連アーティストネット

                                                    地下アイドル間の関連性をネットワークとして分析したり楽曲派を可視化したりしてみた話 - 蛇ノ目の記
                                                  • 最小限のPythonコードでAutoMLを実現するローコード機械学習ライブラリ「PyCaret」

                                                    最小限のPythonコードでAutoMLを実現するローコード機械学習ライブラリ「PyCaret」:AutoML OSS入門(6)(1/4 ページ) AutoML OSSを紹介する本連載第6回は、ローコード機械学習ライブラリ「PyCaret」を解説します。さまざまな機械学習ライブラリのラッパーであるPyCaretは、データ分析のあらゆる工程でコードの行数を削減します。

                                                      最小限のPythonコードでAutoMLを実現するローコード機械学習ライブラリ「PyCaret」
                                                    • PromptBase | Prompt Marketplace: Midjourney, ChatGPT, DALL·E, Sora, FLUX & more.

                                                      Explore 150,000+ curated AI prompts made by expert AI creators

                                                        PromptBase | Prompt Marketplace: Midjourney, ChatGPT, DALL·E, Sora, FLUX & more.
                                                      • Interpretable Machine Learning

                                                        Interpretable Machine Learning A Guide for Making Black Box Models Explainable. Christoph Molnar 2021-05-31 要約 機械学習は、製品や処理、研究を改善するための大きな可能性を秘めています。 しかし、コンピュータは通常、予測の説明をしません。これが機械学習を採用する障壁となっています。 本書は、機械学習モデルや、その判断を解釈可能なものにすることについて書かれています。 解釈可能性とは何かを説明した後、決定木、決定規則、線形回帰などの単純で解釈可能なモデルについて学びます。 その後の章では、特徴量の重要度 (feature importance)やALE(accumulated local effects)や、個々の予測を説明するLIMEやシャープレイ値のようなモデルに非依存な手法(mo

                                                        • 【後藤弘茂のWeekly海外ニュース】 人間の脳から産まれたディープラーニングのプルーニング

                                                            【後藤弘茂のWeekly海外ニュース】 人間の脳から産まれたディープラーニングのプルーニング
                                                          • Techable(テッカブル) - サイト閉鎖のお知らせ

                                                            Techable サイト閉鎖のお知らせ 長らくのご利用、誠にありがとうございました。 当サイトは2024年12月31日をもちまして閉鎖いたしました。 これまでのご支援に心より感謝申し上げます。

                                                              Techable(テッカブル) - サイト閉鎖のお知らせ
                                                            • 東大、“世界最高性能”のディープフェイク検出AIを開発 フェイクニュースやポルノなどの悪用根絶に期待

                                                              東京大学大学院情報理工学系研究科の研究チームは4月26日、動画内の人物の顔が本物かどうかを判定する、ディープフェイク検出AIを開発した。このAIは、既存研究の性能を大きく上回り、世界最高性能の評価を示したという。より高い精度でディープフェイクの検出が可能になるため、悪用の根絶に期待できるとしている。 ディープフェイクを検出するAI技術の多くは、訓練時に学習した作り方に倣ったフェイク画像などしか検出できず、それ以外のものを検証する際には性能が大きく低下する問題を抱えている。 こうした未知のディープフェイクに対し、Microsoftは2020年に、疑似フェイク画像を作り、それを使った検出AIの学習方法を提案している。しかし、この手法では、非常に検出が容易な疑似フェイク画像を生成する場合があり、それらの画像を学習した検出AIは、高圧縮率による潰れた画像や、高/低露光下のフェイク画像に対して、検出

                                                                東大、“世界最高性能”のディープフェイク検出AIを開発 フェイクニュースやポルノなどの悪用根絶に期待
                                                              • ニューラルネットワーク入門

                                                                Pythonコードで理解するニューラルネットワーク入門 ニューラルネットワークの仕組みや挙動を、数学理論からではなく、Pythonコードから理解しよう。フルスクラッチでニューラルネットワーク(DNN:Deep Neural Network)を実装していく。 第1回 Pythonでニューラルネットワークを書いてみよう(2022/02/09) 本連載(基礎編)の目的 ・本連載(基礎編)の特徴 ニューラルネットワークの図 訓練(学習)処理全体の実装 モデルの定義と、仮の訓練データ ステップ1. 順伝播の実装 ・1つのノードにおける順伝播の処理 ・重み付き線形和 ・活性化関数:シグモイド関数 ・活性化関数:恒等関数 ・順伝播の処理全体の実装 ・順伝播による予測の実行例 ・今後のステップの準備:関数への仮引数の追加 第2回 図とコードで必ず分かるニューラルネットワークの逆伝播(2022/02/16)

                                                                  ニューラルネットワーク入門
                                                                • 機械学習セキュリティのベストプラクティス – Draft NISTIR 8269: A Taxonomy and Terminology of Adversarial Machine Learning –

                                                                  機械学習セキュリティのベストプラクティス – Draft NISTIR 8269: A Taxonomy and Terminology of Adversarial Machine Learning – 論文紹介 概要 「Draft NISTIR 8269: A Taxonomy and Terminology of Adversarial Machine Learning」は、米国のNIST(National Institute of Standards and Technology)が策定を進めている機械学習セキュリティに関するベストプラクティスのドラフトであり、機械学習システムの安全確保を目的として、機械学習にまつわるセキュリティを「攻撃」「防御」「影響」の3つの視点で分類している。 NISTIR8269はブログ執筆時点(2020年7月9日)でドラフト版であるが、「NIST SP8

                                                                    機械学習セキュリティのベストプラクティス – Draft NISTIR 8269: A Taxonomy and Terminology of Adversarial Machine Learning –
                                                                  • ZOZO推薦基盤チームの2023年の振り返りと現状 - Qiita

                                                                    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 株式会社ZOZO 推薦基盤チームリーダーの @f6wbl6 です。この記事は「ZOZO Advent Calendar 2023」のカレンダー7の最終回(25日目)です。 この記事では、ZOZOの推薦基盤チームで私とチームメンバーがこの一年、サービス面・組織面で取り組んできたものをいくつか取り上げたいと思います。なおこの記事のタイトルと冒頭の文章は弊社 CTO 兼執行役員の @sonots が書いた以下の記事のオマージュです。 2023年以前の取り組み まず前提として、推薦基盤チームではこれまでにどのような施策を実施してきたのかを簡単に

                                                                      ZOZO推薦基盤チームの2023年の振り返りと現状 - Qiita
                                                                    • AI Project Management Flow and Build Trap Review

                                                                      不確実性の高い機械学習プロジェクトを自己組織化されたチームで健全かつ最大化されたゴールに向かうために

                                                                        AI Project Management Flow and Build Trap Review
                                                                      • GitHub - llm-jp/awesome-japanese-llm: 日本語LLMまとめ - Overview of Japanese LLMs

                                                                        [ English | Français | 日本語 ] 日本語LLM・海外LLMのパラメータ数の推移。日本語モデルの情報は本記事、海外モデルの情報は LifeArchitect.ai の Models table を参照しています(ただし、図のスペース上一部のモデルは省略。また、海外モデルのパラメータ数は推測値を含む)。修正・追加等ありましたらお知らせ下さい。 この記事は、一般公開されている日本語LLM(日本語を中心に学習されたLLM)および日本語LLM評価ベンチマークに関する情報をまとめたものです。情報は、有志により収集されており、その一部は論文や公開されているリソースなどから引用しています。 ::: warning 以下の点について、あらかじめご理解とご了承をお願いいたします 本記事の内容は、完全性や正確性を保証するものではありません。これらの情報は予告なく変更されることがあり、また

                                                                          GitHub - llm-jp/awesome-japanese-llm: 日本語LLMまとめ - Overview of Japanese LLMs
                                                                        • Python: 時系列データの交差検証と TimeSeriesSplit の改良について - CUBE SUGAR CONTAINER

                                                                          一般的に、時系列データを扱うタスクでは過去のデータを使って未来のデータを予測することになる。 そのため、交差検証するときも過去のデータを使ってモデルを学習させた上で未来のデータを使って検証しなければいけない。 もし、未来のデータがモデルの学習データに混入すると、本来は利用できないデータにもとづいた楽観的な予測が得られてしまう。 今回は、そんな時系列データの交差検証と scikit-learn の TimeSeriesSplit の改良について書いてみる。 使った環境は次のとおり。 $ sw_vers ProductName: Mac OS X ProductVersion: 10.14.6 BuildVersion: 18G3020 $ python -V Python 3.8.1 下準備 あらかじめ、必要なパッケージをインストールしておく。 $ pip install scikit-le

                                                                            Python: 時系列データの交差検証と TimeSeriesSplit の改良について - CUBE SUGAR CONTAINER
                                                                          • KubeflowによるMLOps基盤構築から得られた知見と課題 - ZOZO TECH BLOG

                                                                            はじめに こんにちは。SRE部MLOpsチームの中山(@civitaspo)です。みなさんはGWをどのように過ごされたでしょうか。私は実家に子どもたちを預けて夫婦でゆっくりする時間にしました。こんなに気軽に実家を頼りにできるのも全国在宅勤務制度のおかげで、実家がある福岡に住めているからです。「この会社に入って良かったなぁ」としみじみとした気持ちでGW明けの絶望と対峙しております。 現在、MLOpsチームでは増加するML案件への対応をスケールさせるため、Kubeflowを使ったMLOps基盤構築を進めています。本記事ではその基盤構築に至る背景とKubeflowの構築方法、および現在分かっている課題を共有します。 目次 はじめに 目次 MLOpsチームを取り巻く状況 MLOps基盤の要件 MLOps基盤技術としてのKubeflow Kubeflowの構築 ドキュメント通りにKubeflowを構

                                                                              KubeflowによるMLOps基盤構築から得られた知見と課題 - ZOZO TECH BLOG
                                                                            • flairを使って最速でNLPのベースラインモデルを作る - moriyamaのエンジニアリング備忘録

                                                                              自然言語処理に限らず、機械学習関連のプロジェクトではスタート時は、なるべく複雑なコーディングをせずにシンプルなベースラインモデルを低コストで作成し、そこからデータの傾向やタスクの複雑さを把握することが重要です。 ところが自然言語処理では前処理のコストが高く、最低限でも単語分割、ベクトル化、深層学習を用いる場合は事前学習された埋め込みベクトルを準備する必要があります。その後は他のタスクと同様にモデルの保存方法や、予測のパイプラインで悩みポイントを抱えることが多いと思います。 最近はAutoMLを始めとした機械学習の自動化が進歩し、初手から高性能なモデルをブラウザ上で数クリックで作成できますが、中身がブラックボックスである故に前述のデータの傾向やタスクの複雑さを把握することを目的とした場合には適切とは言えない側面があります。 本記事では自然言語処理を対象にモデルの中身が参照可能でかつ少ないコー

                                                                                flairを使って最速でNLPのベースラインモデルを作る - moriyamaのエンジニアリング備忘録
                                                                              • 驚くほどキレイな三次元シーン復元、「3D Gaussian Splatting」を徹底的に解説する - Qiita

                                                                                Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? はじめに 最近、3D業界で大きな衝撃を与えた「3D Gaussian Splatting」1について、ご存知でしょうか?数少ない写真から、目を奪われるほど美しい三次元シーンを再構成できるデモを見て私も大感動しました。なぜこんなに美しいのか、どんな技術で実現したのか、興味が湧いています! "普通の3D物体ではなく、カメラの移動に合わせて、水面に映る景色も正確に表現しています。これはなかなか凄い..." 私も時間をかけて論文や公開されたコード2を勉強しました。本家の実装はCUDA化されており、難解な部分が多く、論文に書かれていないこともあり

                                                                                  驚くほどキレイな三次元シーン復元、「3D Gaussian Splatting」を徹底的に解説する - Qiita
                                                                                • トップカンファレンスにおけるデータセットシフトと機械学習 - Ridge-institute R&D Blog

                                                                                  こんにちは,株式会社Ridge-iのリサーチチームの@machinery81です. 今回はNeurIPS2020で発表されたデータセットシフトを扱う機械学習に関連する論文を紹介します. 本記事は,Ridge-i主催の論文読み会で発表した以下の資料に基づいています. TL;DR 機械学習におけるデータセットシフト Covariate Shift Target Shift Concept Shift Domain Shift Sample Selection Bias Taxonomy of NeurIPS2020 papers about Dataset Shift 論文紹介 Rethinking Importance Weighting for Deep Learning under Distribution Shift Importance Weighting for Distribut

                                                                                    トップカンファレンスにおけるデータセットシフトと機械学習 - Ridge-institute R&D Blog

                                                                                  新着記事