表1(翻訳者により追加) MLOpsにおいて、DevOpsから追加された項目 以下では,予測サービスとして機能するMLモデルのトレーニングと評価の代表的な手順を説明します. MLのためのデータサイエンスの手順 どのMLプロジェクトでも、ビジネスユースケースを定義して成功基準を確立した後、 MLモデルを本番環境にデリバリする過程には次の手順が含まれます。 これらの手順は手動で完了することも、自動パイプラインで完了することもできます。 データ抽出: MLタスクのさまざまなデータソースから関連データを選択して統合します。 データ分析: 探索的データ分析 (EDA) を 実行して、MLモデルの構築に使用可能なデータを把握します。 このプロセスにより、次のことが起こります。 モデルが期待するデータスキーマと特性を理解します。 モデルに必要なデータの準備と特徴量エンジニアリングを特定します。 データの