並び順

ブックマーク数

期間指定

  • から
  • まで

121 - 160 件 / 674件

新着順 人気順

svmの検索結果121 - 160 件 / 674件

  • 【独自】AIベンチャー企業の元取締役 33億円余りを着服か

    東京・千代田区の医療用のAI(人工知能)を開発するベンチャー企業の元取締役が、会社の口座からおよそ29億円を着服した疑いで警視庁に逮捕された。 元取締役は、33億円余りを着服したとみられている。 「エルピクセル」元取締役の志村宏明容疑者(45)は、2018年から2019年にかけて、会社の口座からおよそ29億円を着服した疑いが持たれている。 エルピクセルは、AIを活用した医療診断のソフトウエアを開発するなど、注目のベンチャー企業。 事件当時、志村容疑者は、経理担当者で会社の資金を1人で管理していて、着服した金の大半をFX取引に充てていたという。 警視庁は、志村容疑者があわせて33億円余りを着服したとみて余罪を調べている。

      【独自】AIベンチャー企業の元取締役 33億円余りを着服か
    • ついにGitHubのコードで学習したAI「GitHub Copilot」が集団訴訟に直面

      GitHubのコードで学習したAIを用いたコード補完サービス「GitHub Copilot」のライセンスに関する問題で、GitHubとその親会社であるMicrosoft、開発に携わったOpenAIの3社に対する集団訴訟が提起されました。AIが学習したものを生成するサービスにまつわる訴訟は、これが初とされています。 GitHub Copilot litigation · Joseph Saveri Law Firm & Matthew Butterick https://githubcopilotlitigation.com/ Joseph Saveri Law Firm and Matthew Butterick File Class-Action Lawsuit Against GitHub, Microsoft, and OpenAI Over Violations of Open-S

        ついにGitHubのコードで学習したAI「GitHub Copilot」が集団訴訟に直面
      • 『ポケモン』風画面を“見よう見まね”で生成する機械学習デモが公開。実際に歩ける狂気めいた世界 - AUTOMATON

        ディープラーニング技術者であるOllin Boer Bohan氏が、『ポケットモンスター』風のゲーム画面を生成するデモを構築。プレイヤーの操作まで検知して“それっぽい”映像を再現することに成功し、実際にブラウザ上で操作できるよう公開されている。 Ollin Boer Bohan氏によるデモより 『ポケットモンスター』(以下、ポケモン)は、任天堂の人気RPGシリーズだ。同作はポケモンを捕獲・育成してバトルに挑むシステムが特徴。また、初代『ポケモン 赤・緑』から、メインシリーズ作品は長らく見下ろし視点で親しまれていた。描画としては2Dモノクロから、世代を重ねるごとに色鮮やか・高精細になっていき3D表現に移ったものの、見下ろしスタイルが深く印象に残っているファンも多いだろう。 左がバーチャルコンソール版『ポケモン 赤』、右が『ポケモン ダイヤモンド・パール』 そんな馴染みある見下ろし視点の『ポケ

          『ポケモン』風画面を“見よう見まね”で生成する機械学習デモが公開。実際に歩ける狂気めいた世界 - AUTOMATON
        • 大澤昇平🇺🇳 on Twitter: "伊藤詩織の何がダメダメかって、刑事裁判でレイプが認められなかったにもかかわらず、その後の民事裁判の結果をレイプを関連付けている点。 今回もやってることの筋が通っておらず全く支持できない。"

          伊藤詩織の何がダメダメかって、刑事裁判でレイプが認められなかったにもかかわらず、その後の民事裁判の結果をレイプを関連付けている点。 今回もやってることの筋が通っておらず全く支持できない。

            大澤昇平🇺🇳 on Twitter: "伊藤詩織の何がダメダメかって、刑事裁判でレイプが認められなかったにもかかわらず、その後の民事裁判の結果をレイプを関連付けている点。 今回もやってることの筋が通っておらず全く支持できない。"
          • 全ての機械学習の論文は新しいアルゴリズムを提案しているのですか?

            回答 (2件中の1件目) 悲しいことにその通りです。そしてこれこそがこの分野の最も深い問題です。私の推定では、機械学習では毎年10,000以上の論文が発表されています(一日に30本程度)。2020年は私が機械学習で活発に論文を発表してから35年目の年なので、私も機械学習の研究者と同じようにこの罪を犯しています。 なぜそれが問題なのかを理解してみましょう。警告:以下の議論は、MLの研究者や実践者として、あなたに深い不安を与えてしまうかもしれません。私の推論に少しでも我慢していただければ、私が得られなかった大きな利益を得ることができるかもしれません。私は40年間機械学習について考えてきまし...

              全ての機械学習の論文は新しいアルゴリズムを提案しているのですか?
            • マインクラフトの世界をリアルな世界に変換する「GANcraft」 NVIDIAなどが開発

              Innovative Tech: このコーナーでは、テクノロジーの最新研究を紹介するWebメディア「Seamless」を主宰する山下裕毅氏が執筆。新規性の高い科学論文を山下氏がピックアップし、解説する。 NVIDIAと米Cornell Universityの研究チームが開発した「GANcraft: Unsupervised 3D Neural Rendering of Minecraft Worlds」は、マインクラフトなどのボクセルベースの大規模な世界を写実的な画像に変換する手法だ。土や砂、草木、雪、海、空などをリアルに表現し、見る視点を移動しても一貫した画像を提供する。ゲームやアニメーションの背景、バーチャル空間の作成にも役立つ可能性を秘めている。 マインクラフトは、規則的なグリッド上にブロックを置くだけで3次元空間を構築できる、子どもでも可能な手軽さが魅力だが、各3Dブロックは大きく

                マインクラフトの世界をリアルな世界に変換する「GANcraft」 NVIDIAなどが開発
              • https://twitter.com/t_takasaka/status/1570716749565231104

                  https://twitter.com/t_takasaka/status/1570716749565231104
                • メルアイコン変換器を作った話 - Qiita

                  はじめに 「メルアイコン」と呼ばれる、Melvilleさんの描くアイコンはその独特な作風から大勢から人気を集めています。 上はMelvilleさんのアイコンです。 この方へアイコンの作成を依頼し、それをtwitterアイコンとしている人がとても多いことで知られています。 代表的なメルアイコンの例 (左から順にゆかたゆさん、みなぎさん、しゅんしゅんさんのものです (2020/12/1現在)) 自分もこんな感じのメルアイコンが欲しい!!ということで機械学習でメルアイコン生成器を実装しました!!.......というのが前回の大まかなあらすじです。 今回は別の手法を使って、キャラの画像をメルアイコンに変換するモデルを実装しました。例えばこんな感じで変換できます。 実装したコードはこちら 本記事ではこれに用いた手法を紹介していきます。 GANとは 画像の変換にあたってはUGATITという手法を使って

                    メルアイコン変換器を作った話 - Qiita
                  • キカガク | AI・機械学習を学ぶ動画学習プラットフォーム AIプログラミングスクール

                    キカガクはAIを含めた最先端技術を最短距離で学ぶことができる学習プラットフォームです。今なら新規ユーザー登録(無料)で、Udemy でベストセラーの「脱ブラックボックスコース」完全版をプレゼント!「実務で使える」スキルを身に着け、次の時代に活躍する人材を目指しましょう。

                      キカガク | AI・機械学習を学ぶ動画学習プラットフォーム AIプログラミングスクール
                    • 『施策デザインのための機械学習入門』という本を技術評論社さんから出版します - Counterfactualを知りたい

                      Twitterでたびたび告知させていただいていますが、『施策デザインのための機械学習入門』という本を技術評論社さんから出させていただきます。紙版は8月4日発売(本記事公開の翌日)、電子版は7月30日にすでに発売されています。 gihyo.jp www.amazon.co.jp 本書の概要は次の通りです。 予測に基づいた広告配信や商品推薦など,ビジネス施策の個別化や高性能化のために機械学習を利用することが一般的になってきています。その一方で,多くの機械学習エンジニアやデータサイエンティストが,手元のデータに対して良い精度を発揮する予測モデルを得たにもかかわらず,実際のビジネス現場では望ましい結果を得られないという厄介で不可解な現象に直面しています。実はこの問題は,機械学習の実践において本来必要なはずのステップを無視してしまうことに起因すると考えられます。機械学習を用いてビジネス施策をデザイン

                        『施策デザインのための機械学習入門』という本を技術評論社さんから出版します - Counterfactualを知りたい
                      • 教師あり学習の精度を超えた!?相互情報量の最大化による教師なし学習手法IICの登場!

                        3つの要点 ✔️相互情報量を最大化する枠組みでニューラルネットを学習する教師なし学習手法IICの提案 ✔️予測値をそのまま出力するニューラルネットを学習可能であるため、クラスタリングが不要 ✔️従来の教師なし学習手法の「クラスタが一つにまとまってしまう問題」および「ノイズに弱いという問題」を解決 Invariant Information Clustering for Unsupervised Image Classification and Segmentation written by Xu Ji et.al (Submitted on 22 Aug 2019) subjects : Computer Vision and Pattern Recognition (cs.CV); Machine Learning (cs.LG) はじめに 近年、様々な場面において、深層学習手法が使用さ

                          教師あり学習の精度を超えた!?相互情報量の最大化による教師なし学習手法IICの登場!
                        • 「顔を右に」「口を開く」など画像の動かしたい部分をAIがいい感じに修正してくれるツール「DragGAN」のソースコード&デモが公開される

                          AIを使って画像を生成する時、「ちょっとだけ修正を加えたい」と思うことは多いもの。そんな人たちの夢をかなえるツールが「DragGAN」です。DragGANは画像の中で動かしたいポイントを指示するだけでAIが自動で修正してくれるというもので、2023年5月に論文だけが提出されていましたが、2023年6月22日にソースコードが公開され、同時にデモも登場しました。 GitHub - XingangPan/DragGAN: Official Code for DragGAN (SIGGRAPH 2023) https://github.com/XingangPan/DragGAN Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold https://vcai.mpi-inf.mpg.

                            「顔を右に」「口を開く」など画像の動かしたい部分をAIがいい感じに修正してくれるツール「DragGAN」のソースコード&デモが公開される
                          • 「高等学校における「情報II」のためのデータサイエンス・データ解析入門」|統計学習の指導のために(先生向け)

                            ※1 Pythonコードは、Google Colaboratoryのジュピター・ノートブックの環境で実行することにより動作します。 詳細は、本教材の「参考テキスト」p.159~を参照ください。 ※2「clst.csv」のデータの一部については、自然科学研究機構 国立天文台より2次利用の許可を得て掲載しております。 出典:国立天文台編「理科年表2021」,丸善出版(2020)

                            • AWSも、プログラミングを機械学習で支援する「Amazon CodeWhisperer」プレビュー公開。コメントを書くとコードを提案

                              Amazon Web Services(AWS)は開催中のイベント「Amazon re:MARS 2022」で、機械学習を用いてプログラミングを支援する「Amazon CodeWhisperer」のプレビュー公開を発表しました。 Transform plain ol’ text into lines of code. Amazon CodeWhisperer uses #MachineLearning to generate code recommendations based on developers’ natural language comments & prior code—reducing app build time. AbraCODEabra, it’s #ML magic. https://t.co/kVaKk5HnxB #AWS pic.twitter.com/oRTD

                                AWSも、プログラミングを機械学習で支援する「Amazon CodeWhisperer」プレビュー公開。コメントを書くとコードを提案
                              • 大澤昇平🇺🇳 on Twitter: "具合悪そうだから介抱したのに急に「レイプされた」とかファビョり出して社会的地位を落としにかかってくるのトラップ過ぎるし、男にとって敵でしかないわ。"

                                具合悪そうだから介抱したのに急に「レイプされた」とかファビョり出して社会的地位を落としにかかってくるのトラップ過ぎるし、男にとって敵でしかないわ。

                                  大澤昇平🇺🇳 on Twitter: "具合悪そうだから介抱したのに急に「レイプされた」とかファビョり出して社会的地位を落としにかかってくるのトラップ過ぎるし、男にとって敵でしかないわ。"
                                • 自然言語処理でBERTまでの流れを簡単に紹介 - moriyamaのエンジニアリング備忘録

                                  はじめまして@vimmodeです。普段はMNTSQというリーガルテックの会社で自然言語処理をしています。今回はBERTとBERTまでの流れを簡単に紹介します。 自然言語処理で今やデファクトスタンダードとなりつつであるBERT。登場当時はモデルの複雑さに伴う計算環境や計算リソースの確保が難しく気軽に動かせなかったが、ColabやKaggleカーネル環境が整備されたきたおかげで誰でも気軽に使えるようになりました。 また、haggingface社が公開したBERTと関連モデルのラッパーライブラリであるtransformersによりわずか10行程度でBERTモデルを記述できます。 一方、自然言語処理を始めて間もない段階でいきなりBERTを突きつけられても理解の壁が高いと思いますので、今回は数式やコードを使わずにBERTに至るまでの流れを簡単に紹介したいと思います。 ※これらはあくまで私の理解であり

                                    自然言語処理でBERTまでの流れを簡単に紹介 - moriyamaのエンジニアリング備忘録
                                  • Interpretable Machine Learning

                                    Interpretable Machine Learning A Guide for Making Black Box Models Explainable. Christoph Molnar 2021-05-31 要約 機械学習は、製品や処理、研究を改善するための大きな可能性を秘めています。 しかし、コンピュータは通常、予測の説明をしません。これが機械学習を採用する障壁となっています。 本書は、機械学習モデルや、その判断を解釈可能なものにすることについて書かれています。 解釈可能性とは何かを説明した後、決定木、決定規則、線形回帰などの単純で解釈可能なモデルについて学びます。 その後の章では、特徴量の重要度 (feature importance)やALE(accumulated local effects)や、個々の予測を説明するLIMEやシャープレイ値のようなモデルに非依存な手法(mo

                                    • [輪講資料] LoRA: Low-Rank Adaptation of
 Large Language Models

                                      パラメータを固定した事前学習済みモデルに対して、ごく少数のパラメータからなる低ランク行列を導入・学習することで、モデル全体のfine-tuningと同等の性能を発揮できる手法であるLoRAと、その論文について解説した資料です。 深層学習を用いた自然言語処理の歴史的な変遷と周辺技術から、LoRAが必要と…

                                        [輪講資料] LoRA: Low-Rank Adaptation of
 Large Language Models
                                      • ランダムフォレストによる因果推論と最近の展開

                                        フォレストワークショップ2023で行った招待講演の内容 ・honest treesとは? ・Causal treesによる因果推論 ・Random forestの漸近正規性と、causal forestによる因果推論 ・Generalized random forestによる因果推論

                                          ランダムフォレストによる因果推論と最近の展開
                                        • 顔画像生成のためのデータセットを作る - すぎゃーんメモ

                                          動機 TensorFlowの登場をきっかけに 機械学習によるアイドル顔識別 という取り組みをしていて、3年以上かけてコツコツとアイドルの自撮りを収集してラベルをつけてデータセットを作ってきたけど、 アイドルヲタクはもう辞めてしまって 現場にも全然行かなくなり、卒業・脱退の情報を追いながらラベルを更新していく作業を続ける情熱はすっかり薄れてしまった。 もうアイドル顔識別プロジェクトは終了にしよう、と思った。 しかし折角今まで集めたデータを捨ててしまうのは勿体無い。せめて最後に何か活用できないものか。 と考えて、「画像生成」に再び取り組んでみることにした。 過去に試したことはあったけど、それほど上手くはいっていない。 TensorFlowによるDCGANでアイドルの顔画像生成 TensorFlowによるDCGANでアイドルの顔画像生成 その後の実験など この記事を書いたのが2016年。 この後

                                            顔画像生成のためのデータセットを作る - すぎゃーんメモ
                                          • AIの第一人者ルカン氏、現在のアプローチの多くは真の知能につながらないと批判

                                            「Facebook」「Instagram」「WhatsApp」を運営するMeta Platformsで人工知能(AI)担当のチーフサイエンティストを務めるYann LeCun氏は、この分野に携わる多くの人を困惑させることになりそうだ。 LeCun氏は6月、「Open Review」に投稿した論文で、機械に人間レベルの知能を持たせることが期待できると考えるアプローチについて概観を示した。 この論文で暗に主張しているのは、現在のAIに関する大規模なプロジェクトのほとんどは人間レベルという目標に決して到達できないという点だ。 LeCun氏は、9月に入って米ZDNetが実施した「Zoom」でのインタビューの際、現時点で最も成功しているディープラーニング(DL)の研究手法の多くを非常に懐疑的に見ていることを明らかにした。 コンピューター科学分野のノーベル賞に相当する「ACM A. M. チューリング

                                              AIの第一人者ルカン氏、現在のアプローチの多くは真の知能につながらないと批判
                                            • 時系列モデル(ARIMA/Prophet/NNなど)を統一的なAPIで扱えるPythonライブラリ「Darts」がかなり便利 - フリーランチ食べたい

                                              時系列モデルを扱う上でデファクトスタンダードになりそうなPythonライブラリが出てきました。 時系列モデルを扱うPythonライブラリは、 scikit-learn のようなデファクトスタンダードなものがありません。そのため時系列モデルを用いて実装を行うためには、様々なライブラリのAPIなどの仕様を理解しつつ、それに合わせてデータ整形を行い、評価する必要があり、これはなかなか辛い作業でした。 スイスの企業 Unit8 が今年(2020年)6月末に公開した Darts はまさにこういった課題を解決するライブラリです。時系列に関する様々なモデルを scikit-learn ベースのAPIで統一的に扱うことができます。 github.com Darts は現在、下記のモデルに対応しています。内側では statsmodels 、 Prophet(stan) 、 Pytorch などを使っていて、

                                                時系列モデル(ARIMA/Prophet/NNなど)を統一的なAPIで扱えるPythonライブラリ「Darts」がかなり便利 - フリーランチ食べたい
                                              • GPUメモリが小さくてもパラメーター数が大きい言語モデルをトレーニング可能になる手法「QLoRA」が登場、一体どんな手法なのか?

                                                GPT-1は1億1700万個のパラメーターを持つ言語モデルで、GPT-2では15億、GPT-3では1750億とパラメーター数が増加するにつれて言語モデルの性能が上がってきています。しかしパラメーター数が増加するにつれてトレーニングに必要なデータの数やトレーニング中に使用するメモリの量も増加し、トレーニングのコストが大きく増加してしまいます。そんな中、メモリの消費量を激減させつつ少ないデータでトレーニングできる手法「QLoRA」が登場しました。 [2305.14314] QLoRA: Efficient Finetuning of Quantized LLMs https://arxiv.org/abs/2305.14314 artidoro/qlora: QLoRA: Efficient Finetuning of Quantized LLMs https://github.com/art

                                                  GPUメモリが小さくてもパラメーター数が大きい言語モデルをトレーニング可能になる手法「QLoRA」が登場、一体どんな手法なのか?
                                                • WebAssemblyでの機械学習モデルデプロイの動向

                                                  本記事はMLOps Advent Calendar 2020の 2 日目の記事です。 WebAssembly(Wasm)は機械学習モデルをデプロイする新たな手段になりうるでしょうか。 この記事では、機械学習モデル(特に Deep Learning)を Wasm でデプロイする周辺技術の動向や内部の仕組みをざっくりと説明します。 Table of Contents tkat0 です。WebAssembly(Wasm)面白いですね。 私も最近はyewでフロントエンドを書いて遊んでいます。Rust で React っぽいことできるのは新鮮で面白いです。 Wasm は、なんとなく速い JavaScript?とか機械学習で何に役立つの?とか思ってる方も多いと思います。 しかし、Wasm はブラウザでの推論時に使えるだけでなく、機械学習モデルのサービングやエッジデバイスでの推論にも使えると知ったら驚き

                                                    WebAssemblyでの機械学習モデルデプロイの動向
                                                  • 機械学習で画像の高画質化を試みる(備忘録)- Python3 - Qiita

                                                    1.はじめに 最近、Twitterで「謎の技術で高画質化された画像」なるものがタイムラインにいくつか流れてきて興味が湧いたので、機械学習の勉強がてら画像の高画質化の方法を、僕のように「理屈無しで手っ取り早く機械学習に触れたい!」という人に向けて備忘録としてここに残しておくことにしました。 謎の技術でこれを高画質にするのは草 pic.twitter.com/HeBB7J8Q7D — koboのようなもの (@cinnamon_kobot) February 14, 2020 謎の解像度をあげる技術で僕らのぼっさんが高解像度に!!! pic.twitter.com/cjB0MM8Oqu — ろありす (@roaris) February 15, 2020 2.実行環境の構築 今回、この手の機械学習でよく用いられる「pix2pix」を使用しました。pix2pixはGANを用いた画像生成アルゴリズ

                                                      機械学習で画像の高画質化を試みる(備忘録)- Python3 - Qiita
                                                    • 【厳選】機械学習の学習におすすめのTwitterアカウント40選 - Qiita

                                                      はじめに 最近、翻訳サービスをリリースしたりしてから、機械学習の勉強をどこでしたらいいのか聞かれることが増えました。 機械学習関連の知識は遷移が激しいので、書籍には限界があります。 ですので、その度に「twitterが一番勉強になる」と答えていました。 が、この回答は聞き手依存な無責任な回答な気もしたので、この際フォローすべき人をまとめておこうと思います。 時折機械学習系でない人も紛れているかもしれません。 とりあえず40アカウントおすすめするだけの記事なので、抜け漏れはあると思いますが、後日補完していこうと思います。 登場するアカウントには何の許可も取っていませんが、独断と偏見でアカウントの特徴をメモしていきます。 (メモとはいえ失礼のないよう書いたつもりです) 0. goto_yuta_ 私です。機械翻訳や、論文のまとめなどの話が多いです。自作の機械翻訳サービスの中身に触れたりします。

                                                        【厳選】機械学習の学習におすすめのTwitterアカウント40選 - Qiita
                                                      • AIマップ

                                                        AI Map English Download AI Map Beta 2.0 English (Sep. 1, 2021) Read more » AIマップβ2.0 AI研究初学者と異分野研究者・実務者のための課題と技術の俯瞰図 AI(Artificial Intelligence)研究は拡大し、全体を俯瞰的に捉えることが難しくなっている。また、AI研究の成果を用いた多数のシステム(AIシステム)が実社会で活用され始めており、AIシステムとAI技術との対応も把握が難しくなっている。そこで、これから活躍するAI研究の初学者、およびAI活用を狙う異分野の研究者・実務者をターゲットとしたガイドとして、AIマップβ2.0を作成した。本AIマップβ2.0は、2019年に発刊したAIマップβの発展版であり、AI課題マップと、AI技術マップの2種から構成される。概要を以下に示す。 【AI課題マップ】

                                                        • [速報]AWS、JupyterLab IDEベースの新サービス「SageMaker Studio Lab」無料提供を発表、ブラウザで機械学習を学び試せる。AWS re:Invent 2021

                                                          Amazon Web Services(AWS)は、機械学習の実行環境を提供する新サービス「SageMaker Studio Lab」を無料で提供すると、開催中のイベント「AWS re:Invent 2021」で発表しました。 SageMaker Studio Labは、機械学習の実行環境として広く使われているオープンソースのJupyterLab IDEをベースにした新サービスです。PythonやR言語などに対応しており、ターミナル機能やGitとの連携機能などを備えています。 AWSには、すでに「SageMaker Studio」がサービスとして存在していますが、今回発表された「SageMaker Studio Lab」は機械学習の教育を目的とし、機能の一部をサブセットとして取り出したものといえます。 インストールやセットアップなどは不要で、Webブラウザからすぐに利用可能な環境が立ち上が

                                                            [速報]AWS、JupyterLab IDEベースの新サービス「SageMaker Studio Lab」無料提供を発表、ブラウザで機械学習を学び試せる。AWS re:Invent 2021
                                                          • PyTorchチュートリアル(日本語訳版)

                                                            [1] 本サイトでは、「PyTorch 公式チュートリアル(英語版 version 1.8.0)」を日本語に翻訳してお届けします。 [2] 公式チュートリアルは、①解説ページ、②解説ページと同じ内容のGoogle Colaboratoryファイル、の2つから構成されています。 両者は基本的には同じ内容です。本サイトでは 「Google Colaboratoryファイル」で、チュートリアルの日本語訳を用意しております(未完成分は順次公開いたします)。 [3] 本サイトのチュートリアルの閲覧および実行は、Google Colaboratory環境を前提とします。 (本サイトのライセンスはこちらとなります) [4] 本サイトに掲載している、日本語チュートリアルをまとめて配置したGitHubはこちらとなります。 [0] 目次(table of contents) 日本語解説へ [1] テンソル(T

                                                              PyTorchチュートリアル(日本語訳版)
                                                            • DreamFusion: Text-to-3D using 2D Diffusion

                                                              Abstract Recent breakthroughs in text-to-image synthesis have been driven by diffusion models trained on billions of image-text pairs. Adapting this approach to 3D synthesis would require large-scale datasets of labeled 3D assets and efficient architectures for denoising 3D data, neither of which currently exist. In this work, we circumvent these limitations by using a pretrained 2D text-to-image

                                                                DreamFusion: Text-to-3D using 2D Diffusion
                                                              • (修正)機械学習デザインパターン(ML Design Patterns)の解説

                                                                鷲崎弘宜, "機械学習デザインパターン(ML Design Patterns)の解説", スマートエスイー & JST未来社会 eAIセミナー: 機械学習デザインパターン, 2021年3月30日Read less

                                                                  (修正)機械学習デザインパターン(ML Design Patterns)の解説
                                                                • 【自動運転】信号機認識に挑む / 走行画像15,000枚のアノテーションとYOLOXモデルによる深層学習実践

                                                                  こんにちは。TURING株式会社でインターンをしている、東京大学学部3年の三輪と九州大学修士1年の岩政です。 TURINGは完全自動運転EVの開発・販売を目指すスタートアップです。私たちの所属する自動運転MLチームでは完全自動運転の実現のため、AIモデルの開発や走行データパイプラインの整備を行っています。 完全自動運転を目指すうえで避けて通れない課題の一つに信号機の認識があります。AIが信号機の表示を正しく理解することは、自動運転が手動運転よりも安全な運転を達成するために欠かせません。信号機を確実に認識したうえで、周囲の状況を総合的に判断して車体を制御し、安全かつ快適な走行を実現する必要があります。 TURINGでは信号機の認識に取り組むため、15,000枚規模のデータセットを準備し、高精度なモデルのための調査・研究を開始しました。この記事ではデータセットの内製とその背景にフォーカスしつつ

                                                                    【自動運転】信号機認識に挑む / 走行画像15,000枚のアノテーションとYOLOXモデルによる深層学習実践
                                                                  • (続)ファッションにおける類似商品検索アルゴリズムの性能評価 - DROBEプロダクト開発ブログ

                                                                    概要 背景・目的 関連研究 提案手法 実験 アルゴリズムの説明 順位相関の確認 定量評価 定量評価の内訳 定性評価 おわりに 参考文献 DROBEで機械学習エンジニアをしております、藤崎です。 概要 ファッションアイテムを特徴づけるための情報として、画像とテキストがある。これらは異なる情報を含んでいると考えられる。 類似のファッションアイテムを検索する場面で、画像とテキストの情報を両方活用することで、検索の精度を向上させることができると推測される。 類似のファッションアイテムを検索するタスクで、両方の情報を活用した提案手法の性能を評価し、片方の情報だけを活用するよりも、大幅に性能が改善することを確認した。 背景・目的 この記事は以下の記事の続編です。 tech.drobe.co.jp 以前の記事で、私たちはプロのスタイリストが作成した評価データセットを用いて、複数のアルゴリズムを類似商品検

                                                                      (続)ファッションにおける類似商品検索アルゴリズムの性能評価 - DROBEプロダクト開発ブログ
                                                                    • Googleのエンジニアが人間がコーディングを行うよりも高速で自己進化するAI「AutoML-Zero」を発表

                                                                      Googleのエンジニアチームが、基本的な数理演算のみを使って最適な機械学習アルゴリズムを自動的に発見する人工知能(AI)「AutoML-Zero」を発表しました。 [2003.03384] AutoML-Zero: Evolving Machine Learning Algorithms From Scratch https://arxiv.org/abs/2003.03384 Artificial intelligence is evolving all by itself | Science | AAAS https://www.sciencemag.org/news/2020/04/artificial-intelligence-evolving-all-itself Google Engineers 'Mutate' AI to Make It Evolve Systems Fa

                                                                        Googleのエンジニアが人間がコーディングを行うよりも高速で自己進化するAI「AutoML-Zero」を発表
                                                                      • 大規模言語モデル間の性能比較まとめ|mah_lab / 西見 公宏

                                                                        StableLMのファインチューニングってできるのかな?と調べたところ、GitHubのIssueで「モデル自体の性能がまだ良くないから、ファインチューニングの段階ではないよ」というコメントがありまして。 シートの中身を見てみるlm-evalシートstablelm-base-alpha-7bは54行目にありまして、確かに他の言語モデルと比較するとまだまだな性能のようです。応援したいですね。 シートの列の意味それぞれの列の意味については推定ですが以下の通りです。 RAM 言語モデルのGPUメモリ消費量。 lambada(ppl) LAMBADAデータセットによる測定値。ロングレンジの言語理解能力をテストする(文章全体を読まないと答えられないタスクでの評価)。PPLはPerplexityという指標で、モデルの予測の不確かさを示す。PPLが低いほど、モデルの予測精度が高い。 lambada(acc

                                                                          大規模言語モデル間の性能比較まとめ|mah_lab / 西見 公宏
                                                                        • Words2Emoji - Translate Words To Emojis

                                                                          Looking for a way to add some fun to your texts? Just type in a word and get a suggested emoji that goes with it.

                                                                          • 【翻訳】機械学習の技術的負債の重箱の隅をつつく (前編) - 株式会社ホクソエムのブログ

                                                                            ホクソエムサポーターの白井です。 今回は Matthew McAteer氏によるブログ記事Nitpicking Machine Learning Technical Debtの和訳を紹介します。 原著者の許可取得済みです。 Thank you! アメリカの国内ネタも含んでいて、日本語だと理解しにくい箇所もありますが、機械学習の技術的負債をどう対処していくかについて、とても役に立つ記事だと思います。 Nitpicking Machine Learning Technical Debt (機械学習の技術的負債の重箱の隅をつつく) イントロダクション Part1 技術的負債はあなたの予想以上に悪い Part2 機械学習の漠然とした性質 Part3 (通常の依存関係の頂上にある) データ依存関係 Part4 イライラさせるほど未定義なフィードバックループ 後編に続きます Nitpicking Ma

                                                                              【翻訳】機械学習の技術的負債の重箱の隅をつつく (前編) - 株式会社ホクソエムのブログ
                                                                            • GANを用いた画像異常検知アルゴリズム - Qiita

                                                                              概要 ニューラルポケットは、正常品と異常品を高精度で判別する画像分析アルゴリズムを開発し、国際学会ACPRにて発表しました。複数のオープンデータセットによる評価で、世界最高の異常画像検出精度を達成しています。 正常品と異常品を画像から識別するアルゴリズムは、工場や農業、インフラ管理などの幅広い領域において活用が進められており、属人的な作業を機械化することによる、見逃し率の低減や作業の効率化などに、大きな期待が寄せられています。 この領域においては、従来、正常品とのパターンマッチングを中心としたアプローチが主流でしたが、近年、深層学習を用いたアプローチが広まり、正常品の中でも形状変化が大きい、食品や柔らかい素材の部品など含め、幅広く活用することが出来るようになってきました。 本手法は、その発展として開発されたものであり、以下のような特徴を持ちます: 従来の手法では大量に必要となっていた異常画

                                                                                GANを用いた画像異常検知アルゴリズム - Qiita
                                                                              • 会議中にスマホを触る政治家を機械学習と画像認識で検出

                                                                                会議の最中であるにもかかわらず、政治家が集中せずに手遊びしていたり居眠りしていたりする様子が中継に映り込むことがあります。これを、中継映像から機械学習と画像認識を用いて自動的に検出し、TwitterとInstagramのアカウントで映像付きで報告する仕組みが運用されています。 The Flemish Scrollers, 2021-2022 – Dries Depoorter https://driesdepoorter.be/theflemishscrollers/ Machine Learning Detects Distracted Politicians | Hackaday https://hackaday.com/2022/01/17/machine-learning-detects-distracted-politicians/ ベルギー人アーティストのドリス・ディポーター氏

                                                                                  会議中にスマホを触る政治家を機械学習と画像認識で検出
                                                                                • Good Data Analysis  |  Machine Learning  |  Google for Developers

                                                                                  Good Data Analysis Stay organized with collections Save and categorize content based on your preferences. Author: Patrick Riley Special thanks to: Diane Tang, Rehan Khan, Elizabeth Tucker, Amir Najmi, Hilary Hutchinson, Joel Darnauer, Dale Neal, Aner Ben-Artzi, Sanders Kleinfeld, David Westbrook, and Barry Rosenberg. History Last Major Update: Jun. 2019 An earlier version of some of this material

                                                                                    Good Data Analysis  |  Machine Learning  |  Google for Developers

                                                                                  新着記事