並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 350件

新着順 人気順

python if in list return indexの検索結果1 - 40 件 / 350件

  • 日本のウェブデザインの特異な事例

    sabrinas.spaceより。 8週間もかからなかったはずのプロジェクト 日本のウェブデザインはどう違うのか? 2013年のRandomwireのブログ投稿で、著者(David)は、日本のデザインの興味深い相違点を強調しました。日本人はミニマリストのライフスタイルで海外に知られていますが、ウェブサイトは奇妙なほどマキシマリストです。ページには様々な明るい色(3色デザイン原則を破っている)、小さな画像、そして多くのテキストが使われています。2022年11月に撮影されたこれらのスクリーンショットで、自分の目で確かめて下さい。 ブログ投稿には、文化的専門家、デザイナー仲間、そして不満を抱く市民によって支持されている、考えられる理由がいくつか挙げられていました。 この理論が今でも正しいのか、また、もっと定量的なアプローチが可能なのか気になったのでやってみました。 私が見つけたもの 各国の最も人

      日本のウェブデザインの特異な事例
    • Command Line Interface Guidelines

      Contents Command Line Interface Guidelines An open-source guide to help you write better command-line programs, taking traditional UNIX principles and updating them for the modern day. Authors Aanand Prasad Engineer at Squarespace, co-creator of Docker Compose. @aanandprasad Ben Firshman Co-creator Replicate, co-creator of Docker Compose. @bfirsh Carl Tashian Offroad Engineer at Smallstep, first e

        Command Line Interface Guidelines
      • 退屈なことはPythonにやらせよう 第2版

        一歩先行くハイパフォーマンスなビジネスパーソンからの圧倒的な支持を獲得し、自作RPA本の草分けとして大ヒットしたベストセラー書の改訂版。劇的な「業務効率化」「コスト削減」「生産性向上」を達成するには、単純な繰り返し作業の自動化は必須です。本書ではWordやExcel、PDF文書の一括処理、Webサイトからのダウンロード、メールやSMSの送受信、画像処理、GUI操作といった日常業務でよく直面する面倒で退屈な作業を、Pythonと豊富なモジュールを使って自動化します。今回の改訂では、GmailやGoogleスプレッドシートの操作、Pythonと各種モジュールの最新版への対応、演習等を増補しています。日本語版では、PyInstallerによるEXEファイルの作成方法を巻末付録として収録しました。 関連ファイル サンプルコード 正誤表 書籍発行後に気づいた誤植や更新された情報を掲載しています。お手

          退屈なことはPythonにやらせよう 第2版
        • 日本株3700社以上を分析。yfinance x「わが投資術」株式スクリーニングアプリを作った話(バイブコーディング)

          いきなりですが。 海外旅行したり働き始めたりすると、日本の良さが身に染みたと感じた人は多いんじゃないでしょうか? なんかとりあえず外で働いてみたいと思っていましたが、今はいつ戻るかと考える日々です。(とにかく温泉に入りたい) また色々と各国を回る中で、日本企業ってアジア圏や他の国にもかなり進出してるんだなぁと実感しました。(そりゃそう) そんなこんなで日本株に興味を持ち 昨年にわが投資術を購入して実践し始めました。(まだ初めて一年目なので成績はわかりません。。。が、マイナスは無し) 自分でバフェットコードや Claude mcp-yfinance などを利用しながらスクリーニングしてみましたが、毎回決算が出るたびに手動とチャット相手にあるのも何かなぁ。と思いまして。 じゃあ自動収集とスクリーニング用のアプリ作ってみよう(vibe coding) そんなノリから、日本株全銘柄を自動収集・簡易

            日本株3700社以上を分析。yfinance x「わが投資術」株式スクリーニングアプリを作った話(バイブコーディング)
          • Ubuntu 24.04 LTS サーバ構築手順書

            0 issue "letsencrypt.org" 0 issuewild "letsencrypt.org" 0 iodef "mailto:yourmail@example.jp" §OS再インストール 初期設定で期待通りの設定ができていない場合は、OSの再インストールをする。 さくらVPSのコントロールパネルから、OSを再インストールするサーバを選ぶ。 www99999ui.vs.sakura.ne.jp §OSのインストール操作 Ubuntu 24.04 LTS を選ぶ。 OSインストール時のパケットフィルタ(ポート制限)を無効にして、ファイアウォールは手動で設定することにする。 初期ユーザのパスワードに使える文字が制限されているので、ここでは簡単なパスワードにしておき、後ですぐに複雑なパスワードに変更する。 公開鍵認証できるように公開鍵を登録しておく。 §秘密鍵と公開鍵の作成 ク

              Ubuntu 24.04 LTS サーバ構築手順書
            • Model Context Protocol(MCP)とは?生成 AI の可能性を広げる新しい標準

              はじめに こんにちは。クラウドエースの荒木です。 ChatGPT や Claude などの生成 AI が日常生活やビジネスに浸透してきましたが、これらの AI の真価は外部システムと連携したときに発揮されます。しかし、この連携には大きな課題がありました。 これまで AI と外部システムを連携させるには、システムごとに個別の API 統合が必要で、認証方法やデータ形式、エラー処理など、細かな実装を繰り返す必要がありました。このような個別対応は開発効率を下げ、拡張性や保守性の面でも問題がありました。 そこで登場したのが「Model Context Protocol(MCP)」です。2024 年 11 月に Anthropic が発表したこのオープンプロトコルは、AI と外部システムの接続を標準化し、開発者の負担を大幅に軽減します。 この記事では、MCP の基本概念から実装方法、活用事例まで、技

                Model Context Protocol(MCP)とは?生成 AI の可能性を広げる新しい標準
              • MCPサーバーが切り拓く!自社サービス運用の新次元 - エムスリーテックブログ

                こんにちは、エムスリーエンジニアリンググループ、コンシューマチームの園田です。本記事では、外部サービスとAIエージェントの連携を可能にするMCPプロトコルについて、技術検証の実装例を交えてお話しします。 1. MCPとは(ざっくり) MCP(Model Context Protocol)とは、Anthropic社によって策定されたAIエージェントが外部サービスから情報を参照したり連携することを目的としたプロトコルです。 「MCPサーバー」は、GitHubやPostgreSQLといったリソースをMCPで喋れるように変換してあげるプロキシのようなサーバーです。 Claude DesktopやCursorなどはMCPクライアントの機能があり、GitHubなどのMCPサーバーを利用してナレッジとして利用したり、プルリクエストの作成なども行えます。 Introduction - Model Cont

                  MCPサーバーが切り拓く!自社サービス運用の新次元 - エムスリーテックブログ
                • とほほのHaskell入門 - とほほのWWW入門

                  概要 Haskellとは 関数型言語 純粋関数型言語 インストール Haskell Stack Hello world 基本 予約語 コメント ブロック レイアウト 入出力 型 変数 数値 文字(Char) 文字列(String) エスケープシーケンス リスト([...]) タプル((...)) 演算子 関数 演算子定義 再帰関数 ラムダ式 パターンマッチ ガード条件 関数合成(.) 引数補足(@) 制御構文 do文 let文 if文 case文 where文 import文 ループ データ型 データ型(列挙型) データ型(タプル型) データ型(直和型) 新型定義 (newtype) 型シノニム (type) 型クラス (class) メイビー(Maybe) ファンクタ(Functor) アプリケイティブ(Applicative) モナド(Monad) モジュール (module) 高階関

                  • 【感想】『Amazon Web Servicesを使ったサーバーレスアプリケーション開発ガイド』:Lambdaで本格サービス開発まで - Rのつく財団入り口

                    サーバーレスアプリケーション開発ガイド Lambda関数を用いたサーバーレス開発をもっと知っておこうと思って読んだ本の感想です。2018年4月刊行、サーバーレスの主要サービス解説にコードはPython、のみならずフロントはVue.jsを使った本格開発まで、実践的な内容が詰まった本です。 作者は現Amazon Web Services Japan所属のKeisuke69こと西谷圭介さん。Twitterでもよくお見掛けします。(@Keisuke69) サーバーレスアプリケーション開発ガイド Chapter1 サーバーレスアプリケーションの概要 1-1 サーバーレスアプリケーションとは 1-2 ユースケースとアーキテクチャパターン 1-3 サーバーレスアプリケーションのライフサイクル管理 Chapter2 Amazon Web Services(AWS)利用の準備 Chapter3 インフラを自

                      【感想】『Amazon Web Servicesを使ったサーバーレスアプリケーション開発ガイド』:Lambdaで本格サービス開発まで - Rのつく財団入り口
                    • FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ|ハイクラス転職・求人情報サイト アンビ(AMBI)

                      FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ PythonのWebフレームワークとしていま注目を集めるFastAPIは、シンプルにコードが書けるだけでなく、パフォーマンスが高いWebアプリケーションのバックエンドサーバーが構築可能です。同フレームワークの勘所をPythonスペシャリストの杜世橋さんが、初心者向けのハンズオン、そしてより実践的な画像への自動タグ付けサービス実装をとおして解説します。 FastAPIはいま非常に注目されているPythonのWebフレームワークの1つです。Flaskのようにシンプルに書ける一方でPythonのType Hintの機能をうまく活用し、HTTPのリクエスト/レスポンスをPythonの関数の引数/戻り値とシームレスにマッピングして非常に効率的に開発ができるのが最大の特徴です。非同期処理にも対応していてその名

                        FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ|ハイクラス転職・求人情報サイト アンビ(AMBI)
                      • 再帰的な構造のデータの同値性判定はどうしたらいいか - 貳佰伍拾陸夜日記

                        数日前にTwitterで, JavaScriptのオブジェクトに対する===の挙動が初心者には難しいみたいな話を見かけた. 発端や周辺の議論をちゃんと追いかけてないからとくに出典は貼らない. たぶん元々の話は「へぇ, こういう挙動なんだ, 簡単ではないね」くらいの話だったのかもしれない. 自分のタイムラインの観測範囲では「そうだそうだ, (参照の同一性ではなく)同値性にしとけばいいのに」と思っている人もそれなりにいそうに見えた. 個人的にも同値性が簡単に確認できるとよい気はするものの, 「なんでそうしないんだ, オブジェクトの中身を確認していくだけだろ!」みたいな簡単な話ではないことも知っているため, 以下のようなツイートをしたのだった. JavaScriptのオブジェクトの同値性、再帰的な構造とか作るとぜんぜん自明じゃないんだよなぁ。リンクの構造は違うけどプロパティを辿ったときのパスはど

                          再帰的な構造のデータの同値性判定はどうしたらいいか - 貳佰伍拾陸夜日記
                        • 「ベクトル検索 vs 全文検索」〜Amazon Bedrockの埋め込みモデルを用いたプロトタイピング〜 - コネヒト開発者ブログ

                          ※ この記事は、AWS (Amazon Web Services) の技術支援を受けて執筆しています。 はじめに この記事はコネヒトアドベントカレンダー 8日目の記事です。 コネヒト Advent Calendar 2023って? コネヒトのエンジニアやデザイナーやPdMがお送りするアドベント カレンダーです。 コネヒトは「家族像」というテーマを取りまく様々な課題の解決を 目指す会社で、 ママの一歩を支えるアプリ「ママリ」などを 運営しています。 adventar.org こんにちは!コネヒトの機械学習エンジニア y.ikenoueです。 突然ですがみなさん、Amazon Bedrockをご存知でしょうか。 aws.amazon.com Amazon Bedrock(以下、Bedrock)は、テキスト生成AIをはじめとする基盤モデル (Foundation Model)*1を提供するAWS

                            「ベクトル検索 vs 全文検索」〜Amazon Bedrockの埋め込みモデルを用いたプロトタイピング〜 - コネヒト開発者ブログ
                          • Gemini 2.5 Proと取り組んだデータ分析のリアルな道のり - Nealle Developer's Blog

                            はじめに はじめまして。Analyticsチームの清水です。 2024年12月に入社しまして、約4ヶ月が経過しました。今回が初めてのテックブログになります。 ▼先日、入社エントリも公開しました。 本稿のテーマは、自由記述のテキストをラベリングして分類する分析タスクに対し、Geminiと共に取り組んで分かったことの共有です。 私は生成AIをそれほどたくさん使った経験があるわけではないので、これが最良の使い方というわけではないと思いますが、どのようにプロンプトを組み立て、どう効率的に分析を進められたのかを可能な限りリアルに書いていきます。 ※今回利用したモデルは、Gemini 2.5 Proです。 はじめに Geminiを活用したデータ分析の進め方 フェーズ0: アプローチの模索 - Notebook LMや教師なし学習の試行 フェーズ1: データ理解とラベルチェック - コード生成と探索的分

                              Gemini 2.5 Proと取り組んだデータ分析のリアルな道のり - Nealle Developer's Blog
                            • LangChainを使わない - ABEJA Tech Blog

                              TL; DR LangChainのメリデメを整理する過程で、今となってはopenai-pythonのうちChatGPTのAPIをを簡単に取り回せる程度のシンプルなライブラリがあるだけでも十分便利なんじゃないかと思ったので、ライブラリを個人で作ってみました。(バージョン0.0.1なのでちょっとお粗末な所もありますが) github.com はじめに こんにちは、データサイエンティストの坂元です。ABEJAアドベントカレンダーの13日目の記事です。世は大LLM時代ということで、ありがたいことにABEJAでも複数のLLMプロジェクトを推進させて頂いています。私自身もいくつかのLLMプロジェクトに参画しています。LLMといえばLangChainが便利ですね。OpenAI APIの利用だけでなく、各種ドキュメントのパースが出来たり、HuggingFaceやインデックスDBを扱う他のライブラリとインテ

                                LangChainを使わない - ABEJA Tech Blog
                              • みんなのためのLLMアプリケーション開発環境の構築事例

                                はじめに こんにちは。Game Platform DevのDong Hun Ryoo、Takenaka、Zhang Youlu(Michael)、Hyungjung Leeです。私たちの組織は、ゲームパブリッシングに必要なさまざまな機能を開発・運用する役割を担っています。 私たちは最近、組織内の業務効率を高めるためにさまざまなLLM(large language model)アプリケーションを開発し、それと連携してLLMOpsシステムの構築プロジェクトを行いました。プロジェクトの主な目標の一つは、参入障壁が高いLLMアプリケーション開発を、職種に関係なく誰でも簡単に作成できる環境を構築することでした。そのため、さまざまなことを考えながら試行錯誤を経た結果、誰でも簡単にアクセスできる開発・デプロイ環境を整えました。 今回の記事では、LLMアプリケーションの一般的な開発方法と開発プロセスで直面

                                  みんなのためのLLMアプリケーション開発環境の構築事例
                                • 2024年のPythonプログラミング - Uzabase for Engineers

                                  ソーシャル経済メディア「NewsPicks」で推薦や検索などのアルゴリズム開発をしている北内です。Pythonは頻繁に新機能や便利なライブラリが登場し、ベストプラクティスの変化が激しい言語です。そこで、2024年2月時点で利用頻度の高そうな新機能、ライブラリ、ツールなどを紹介したいと思います。 この記事では広く浅く紹介することに重点を置き、各トピックについては概要のみを紹介します。詳細な使用方法に関しては各公式サイト等での確認をおすすめします。なお、本記事ではOSとしてmacOSを前提としています。 環境構築 Pythonの環境構築はpyenvとPoetryの組み合わせがもっとも標準的でしょう。 以下の手順でpyenvとPythonをインストールできます。 brew install pyenv # Bashの場合 echo 'eval "$(pyenv init -)"' >> ~/.ba

                                    2024年のPythonプログラミング - Uzabase for Engineers
                                  • 「だんご屋のひまつぶし」完全解析 - すぎゃーんメモ

                                    「だんご屋のひまつぶし」とは 最長手順の問題は…? 組み合わせ、グラフ問題 プログラムで解く 状態の列挙 グラフの構築 最短経路問題を解く WASM化して、ブラウザ上で解く もしもすべて異なる団子だったら さらに一般化していくと 到達可能性 頂点数 本数を固定し、高さを変える 高さを固定し、本数を変える まとめ Repository 「だんご屋のひまつぶし」とは 「ハノイの塔」の派生型のようなパズル。 高さ3の串が3本あり、3色の団子2個ずつ計6個が刺さっている。これらを1個ずつ移し替えて、ある状態からある状態へと遷移させる、というゲーム。 移動できるのは各串で一番上にある団子だけ。 団子の大きさのような概念はなく、高さ3以内であればどこにでも動かせる。 単純なルールだがなかなかに奥が深く、じっくり考えて動かさないと最適な手順で達成するのは意外に難しい。 パズルオーディションというもので最

                                      「だんご屋のひまつぶし」完全解析 - すぎゃーんメモ
                                    • 大実験!ChatGPTは競プロの問題を解けるのか (2024年5月版) - E869120's Blog

                                      1. はじめに 2024 年 5 月 14 日、OpenAI 社から新たな生成 AI「GPT-4o」が発表され、世界に大きな衝撃を与えました。これまでの GPT-4 よりも性能を向上させただけでなく1、音声や画像のリアルタイム処理も実現し、さらに応答速度が大幅に速くなりました。「ついにシンギュラリティが来てしまったか」「まるで SF の世界を生きているような感覚だ」という感想も見受けられました。 しかし、いくら生成 AI とはいえ、競技プログラミングの問題を解くのは非常に難しいです。なぜなら競技プログラミングでは、問題文を理解する能力、プログラムを実装する能力だけでなく、より速く答えを求められる解法 (アルゴリズム) を考える能力も要求されるからです。もし ChatGPT が競技プログラミングを出来るようになれば他のあらゆるタスクをこなせるだろう、と考える人もいます。 それでは、現代最強の

                                        大実験!ChatGPTは競プロの問題を解けるのか (2024年5月版) - E869120's Blog
                                      • MySQL のインデクスが利用されないクエリ等を自動検出する ExplainPolice の運用について

                                        LINE株式会社は、2023年10月1日にLINEヤフー株式会社になりました。LINEヤフー株式会社の新しいブログはこちらです。 LINEヤフー Tech Blog LINE 株式会社 B2B Platform 開発担当フェローの Matsuno です。 LINE の Business Platform ではメインのデータベースとして MySQL を利用しています。MySQL は非常に高速に動く OSS の RDBMS なので、とても便利に利用させていただいております。 MySQL はとても高速なのですが、うっかり index を使わないクエリを発行した場合に実行がとても遅くなってしまうことがあります。LINE の Business Platform はとても多くのお客様が利用されるので、B2B としては異例なほどトラフィックが多く、少し遅いクエリが発生した結果としてサイト全体がダウンして

                                          MySQL のインデクスが利用されないクエリ等を自動検出する ExplainPolice の運用について
                                        • Rustで実装するmalloc - NTT docomo Business Engineers' Blog

                                          この記事は、NTT Communications Advent Calendar 2021 21日目の記事です。 はじめに こんにちは、イノベーションセンターの鈴ヶ嶺(@suzu_3_14159265)です。普段は、クラウド・ハイブリッドクラウド・エッジデバイスなどを利用したAI/MLシステムに関する業務に従事しています。本日は、Rustで動的メモリ確保(dynamic memory allocation)のmallocを実装してPythonやvimを動かしてみようという内容をお届けします。 また、去年もRustネタのアドベントカレンダーを書いているのでぜひ見ていただけると嬉しいです! NTTコミュニケーションズ Advent Calendar 2020 Rustで実装するNetflow Collector 実装するmallocのアルゴリズム 今回実装するmallocのアルゴリズムは小さな

                                            Rustで実装するmalloc - NTT docomo Business Engineers' Blog
                                          • 次世代のワークフロー管理ツールPrefectでMLワークフローを構築する CyberAgent Developers Blog | サイバーエージェント デベロッパーズブログ

                                            ※ DynalystではAWSを全面的に採用しているため、AirflowもManaged版を調査しています。 導入後の状態 Prefect導入後は、以下の構成となりました。 ポイントは以下の点です。 ワークフローをDocker Image化することで、開発・本番環境の差を軽減 staging・productionはECS Taskとしてワークフローを実行、開発ではローカルPC上でコンテナ実行 ML基盤のGitHubレポジトリへのマージで、最新ワークフローが管理画面であるPrefect Cloudへデプロイ 従来のyamlベースのdigdagから、DSに馴染み深いPythonベースのPrefectに移行したことで、コード量が減り開発負荷が軽減しました。 Prefect 入門 ~ 基礎 ~ 注意: 本記事ではPrefect 1系を扱います。Prefect 2系が2022年7月にリリースされてい

                                              次世代のワークフロー管理ツールPrefectでMLワークフローを構築する CyberAgent Developers Blog | サイバーエージェント デベロッパーズブログ
                                            • Qwen3 の概要|npaka

                                              以下の記事が面白かったので、簡単にまとめました。 ・Qwen3: Think Deeper, Act Faster 1. Qwen3本日 (2025年4月28日) 、「Qwen3」をリリースしました。「Qwen3-235B-A22B」は、「DeepSeek-R1」「o1」「o3-mini」「Grok-3」「Gemini-2.5-Pro」などの他のトップティアモデルと比較して、コーディング、数学、一般的な機能などのベンチマーク評価で競争力のある結果を達成しています。さらに、小型のMoEである「Qwen3-30B-A3B」は、10倍のアクティブパラメータを持つ「QwQ-32B」を凌駕し、「Qwen3-4B」のような小さなモデルでさえ、「Qwen2.5-72B-Instruct」の性能に匹敵します。 2つのMoEモデルをオープンウェイト化しています。「Qwen3-235B-A22B」は、総パラメ

                                                Qwen3 の概要|npaka
                                              • REST API Design Best Practices Handbook – How to Build a REST API with JavaScript, Node.js, and Express.js

                                                By Jean-Marc Möckel I've created and consumed many API's over the past few years. During that time, I've come across good and bad practices and have experienced nasty situations when consuming and building API's. But there also have been great moments. There are helpful articles online which present many best practices, but many of them lack some practicality in my opinion. Knowing the theory with

                                                  REST API Design Best Practices Handbook – How to Build a REST API with JavaScript, Node.js, and Express.js
                                                • DuckDB でハイブリッド検索

                                                  DuckDB を利用してベクトル検索と日本語全文検索の両方を同時に利用できます。さらにこれらの結果をマージして Reranking を行うことでハイブリッド検索をサクサクっと実現する事が​できます。 Rerankerどうやらベクトル検索した結果と日本語全文検索した結果をマージして、クエリーとマージ結果を再度ランキング付けする仕組みのようです。 ここでは参考にした記事を共有する程度にしておきます。 日本語最高性能のRerankerをリリース / そもそも Reranker とは? - A Day in the Lifeリランキング モデルによる RAG の日本語検索精度の向上 - NVIDIA 技術ブログ今回は Reranker に hotchpotch/japanese-reranker-cross-encoder-large-v1 を利用しました。 以下は参考コードです。 [projec

                                                    DuckDB でハイブリッド検索
                                                  • プロと読み解くRuby 3.4 NEWS - STORES Product Blog

                                                    プロと読み解くRuby 3.4 NEWS テクノロジー部門技術基盤グループの笹田(ko1)と遠藤(mame)です。Ruby (MRI: Matz Ruby Implementation、いわゆる ruby コマンド) の開発をしています。お金をもらって Ruby を開発しているのでプロの Ruby コミッタです。 本日 12/25 に、恒例のクリスマスリリースとして、Ruby 3.4.0 がリリースされました(Ruby 3.4.0 リリース )。今年も STORES Product Blog にて Ruby 3.4 の NEWS.md ファイルの解説をします(ちなみに、STORES Advent Calendar 2024 の記事になります。他も読んでね)。NEWS ファイルとは何か、は以前の記事を見てください。 プロと読み解く Ruby 2.6 NEWS ファイル - クックパッド開発者

                                                      プロと読み解くRuby 3.4 NEWS - STORES Product Blog
                                                    • ぼくのMac環境 ver.のんピ | DevelopersIO

                                                      何年後かの自分へ こんにちは、のんピ(@non____97)です。 業務で使用する新しいMacが届きました。 新しいMacを初期セットアップするにあたって「今の設定どうだったっけ...」と調べる時間が結構かかってしまいました ということで何年後かの自分がまた新しいMacに乗り換える際に手間取らないように、設定した内容を書き記しておきます。 移行先のMacの情報は以下の通りです。M1 Max、嬉しい。 # OSのバージョンの確認 > sw_vers ProductName: macOS ProductVersion: 12.4 BuildVersion: 21F79 # カーネルのバージョン確認 > uname -r 21.5.0 # CPUのアーキテクチャの確認 > uname -m arm64 # CPUの詳細確認 > sysctl -a machdep.cpu machdep.cpu.

                                                        ぼくのMac環境 ver.のんピ | DevelopersIO
                                                      • The Prompt Engineering Playbook for Programmers

                                                        Developers are increasingly relying on AI coding assistants to accelerate our daily workflows. These tools can autocomplete functions, suggest bug fixes, and even generate entire modules or MVPs. Yet, as many of us have learned, the quality of the AI’s output depends largely on the quality of the prompt you provide. In other words, prompt engineering has become an essential skill. A poorly phrased

                                                          The Prompt Engineering Playbook for Programmers
                                                        • GitHub+CircleCIによる業務要件の記述精度向上の取り組み - ZOZO TECH BLOG

                                                          こんにちは。MSP技術推進部の手塚(@tzone99)です。 この記事では、エンジニア向けのツールを周囲のエンジニア以外のチームにも導入し、チームを跨いだコミュニケーション上の課題を解決した事例をご紹介します。 普段エンジニアとしてプロダクトを開発する中でも、エンジニア同士のやり取りだけで業務が完結しないケースも多いかと思います。周囲のチームとやり取りする中でコミュニケーションのずれが発生した場合の対応として、今回の事例が参考になれば幸いです。 MSP技術推進部の活動について興味のある方はこちらの記事もぜひご覧ください。 techblog.zozo.com techblog.zozo.com techblog.zozo.com techblog.zozo.com 目次 目次 背景 コミュニケーション上の課題 業務要件のMarkdown/PlantUML化 運用の初期対応 自作のLinter

                                                            GitHub+CircleCIによる業務要件の記述精度向上の取り組み - ZOZO TECH BLOG
                                                          • ElasticsearchとKibela APIを使ってSlackでのCSお問い合わせ対応業務を改善した話 - BASEプロダクトチームブログ

                                                            この記事はBASE Advent Calendar 2020の11日目の記事です。 devblog.thebase.in BASE株式会社 Data Strategy チームの@tawamuraです。 BASEではオーナーの皆様や購入者様のお問い合わせに対して、Customer Supportチームが主となって対応をしています。その中でもいくつかの技術的なお問い合わせに対しては、以下のようにSlackの専用チャンネルを通して開発エンジニアに質問を投げて回答を作成することになっています。 CSチームから調査を依頼されるお問い合わせの例 これらのCS問い合わせ対応は日々いくつも発生しており、CSお問い合わせ対応を当番制にして運用してみた話 でもあるように週ごとに持ち回り制で各部門のエンジニアが対応しているのですが、どうしても調査や対応に時間が取られてしまうという問題が発生していました。 dev

                                                              ElasticsearchとKibela APIを使ってSlackでのCSお問い合わせ対応業務を改善した話 - BASEプロダクトチームブログ
                                                            • GitHub - modelcontextprotocol/servers: Model Context Protocol Servers

                                                              Official integrations are maintained by companies building production ready MCP servers for their platforms. 21st.dev Magic - Create crafted UI components inspired by the best 21st.dev design engineers. ActionKit by Paragon - Connect to 130+ SaaS integrations (e.g. Slack, Salesforce, Gmail) with Paragon’s ActionKit API. Adfin - The only platform you need to get paid - all payments in one place, in

                                                                GitHub - modelcontextprotocol/servers: Model Context Protocol Servers
                                                              • neue cc - Claudia - Anthropic ClaudeのC# SDKと現代的なC#によるウェブAPIクライアントの作り方

                                                                AI関連、競合は現れども、性能的にやはりOpenAI一強なのかなぁというところに現れたAnthropic Claude 3は、確かに明らかに性能がいい、GPT-4を凌駕している……!というわけで大いに気に入った(ついでに最近のOpenAIのムーブが気に入らない)ので、C#で使い倒していきたい!そこで、まずはSDKがないので非公式SDKを作りました。こないだまでプレビュー版を流していたのですが、今回v1.0.0として出します。ライブラリ名は、Claudeだから、Claudiaです!.NET全般で使えるのと、Unity(Runtime/Editor双方)でも動作確認をしているので、アイディア次第で色々活用できると思います。 GitHub - Cysharp/Claudia 今回のSDKを作るにあたっての設計指針の一番目は、公式のPython SDKやTypeScript SDKと限りなく似せる

                                                                • 競馬必勝本は本当に当たるのかを検証!〜Pythonで実装する馬券自動選択ツール〜 - エニグモ開発者ブログ

                                                                  こんにちは、サーバーサイドエンジニアの竹本です。 この記事は Enigmo Advent Calendar 2020 の3日目の記事です。 みなさまは2020年に買った中でよかったものはなんでしょう? 私はiPadです。 最新 Apple iPad Pro (12.9インチ, Wi-Fi, 128GB) - シルバー (第4世代) 発売日: 2020/03/25メディア: Personal Computers 主にkindleを見開きで読むことに活用しています。 エニグモの福利厚生の一つ「エンジニアサポート」で5万円の補助を受けました。わーい。 https://enigmo.co.jp/recruit/culture/ そしてみなさまは馬券、買っていますか? 馬券は競馬に賭ける際に購入する投票券です。 1口100円から、ネットでも気軽に購入することができます。(競馬は20歳から) 弊社にも

                                                                    競馬必勝本は本当に当たるのかを検証!〜Pythonで実装する馬券自動選択ツール〜 - エニグモ開発者ブログ
                                                                  • GiNZAと患者表現辞書を使って患者テキストの表記ゆれを吸収した意味構造検索を試した - エムスリーテックブログ

                                                                    エムスリーエンジニアリンググループ AI・機械学習チームの中村(@po3rin) です。 好きな言語はGo。仕事では主に検索周りを担当しています。 最近「医療言語処理」という本を読んで、医療用語の表記ゆれ吸収や意味構造検索などについて学びました。 医療言語処理 (自然言語処理シリーズ) 作者:荒牧 英治発売日: 2017/08/01メディア: 単行本 そこで今回はElasticsearchと患者表現辞書を使った意味構造検索がどのくらい実戦投入できるかを簡単に試したので、概要と実装方法を簡単にご紹介します。 患者テキストの表記ゆれ 患者テキストの表記ゆれとは MEDNLPの患者表現辞書 トークンによる検索の課題と対策の検討 主語が違うのにヒットしちゃう? 意味構造検索 係り受け解析と患者表現辞書を使った意味構造検索の実装 患者表現辞書を使った係り受け解析 患者表現辞書の表現をクエリに展開する

                                                                      GiNZAと患者表現辞書を使って患者テキストの表記ゆれを吸収した意味構造検索を試した - エムスリーテックブログ
                                                                    • MCP Python SDK のドキュメント|npaka

                                                                      以下の記事が面白かったので、簡単にまとめました。 ・modelcontextprotocol/python-sdk 1. 概要「MCP」を使用すると、アプリケーションは標準化された方法でLLMにコンテキストを提供できます。これにより、コンテキストの提供とLLMとの実際のやり取りを分離できます。「Python SDK」はMCP仕様を完全に実装しており、以下のことが容易になります。 ・任意のMCPサーバに接続できるMCPクライアントの構築 ・リソース、プロンプト、ツールを公開するMCPサーバの作成 ・stdio、SSE、Streamable HTTPなどの標準トランスポートの使用 ・すべてのMCPプロトコルメッセージとライフサイクルイベントの処理 2. インストール2-1. PythonプロジェクトにMCPを追加Pythonプロジェクトの管理には「uv」が推奨されています。 (1) プロジェク

                                                                        MCP Python SDK のドキュメント|npaka
                                                                      • 機械学習で競馬必勝本に勝てるのか? 〜Pythonで実装するランク学習〜 - エニグモ開発者ブログ

                                                                        こんにちは。データサイエンティストの堀部です。 この記事は Enigmo Advent Calendar 2020 の9日目の記事です。 何か社外のデータを使っていい感じのことができないかなと思っていたところ、3日目の竹本さんの記事がおもしろく、パクリ二次創作しました。 短期間で実装したので汚いコードで見苦しいかもしれないですがご了承ください。ちなみに、私は競馬は簡単なルールを知っているくらいでズブの素人です。 目次 使用したライブラリ データ取得 前処理 学習 予測・評価 VSオッズ低い順 VS競馬必勝本 感想 参考資料 使用したライブラリ import urllib.parse import urllib.request as req from time import sleep import category_encoders as ce import lightgbm as lgb

                                                                          機械学習で競馬必勝本に勝てるのか? 〜Pythonで実装するランク学習〜 - エニグモ開発者ブログ
                                                                        • Python×株式投資:従来の100倍!銘柄選抜のバックテストを高速化した話 - Qiita

                                                                          # ----------------------------- # 2nd Screening V1 # ----------------------------- import time global_start_time = time.time() from google.colab import drive drive.mount('/content/drive') import pandas as pd import numpy as np import os from tqdm.notebook import tqdm import yfinance as yf from curl_cffi import requests # -------------------------------------------------- # ヘルパー関数定義セクション # --------

                                                                            Python×株式投資:従来の100倍!銘柄選抜のバックテストを高速化した話 - Qiita
                                                                          • GPT in 60 Lines of NumPy | Jay Mody

                                                                            January 30, 2023 In this post, we'll implement a GPT from scratch in just 60 lines of numpy. We'll then load the trained GPT-2 model weights released by OpenAI into our implementation and generate some text. Note: This post assumes familiarity with Python, NumPy, and some basic experience with neural networks. This implementation is for educational purposes, so it's missing lots of features/improv

                                                                            • 【ChatGPT】GPT-4でPythonの画像ビューワを作成してみた | DevelopersIO

                                                                              新規事業統括部の山本です。 今日OpenAIのChatGPTのモデルとして、GPT-4が利用可能になりました。早速使ってみようと思います。 やってみる 今回は画像のビューワを作成してみます。ちょうどデータセットの画像や、画像モデルに入力した結果を表示するツールがほしいと思っていました。 import os import tkinter as tk from tkinter import filedialog from PIL import Image, ImageTk def browse_folder(): folder_path = filedialog.askdirectory() if not folder_path: return images_frame.delete("all") load_images(folder_path) def load_images(folder_

                                                                                【ChatGPT】GPT-4でPythonの画像ビューワを作成してみた | DevelopersIO
                                                                              • BlenderとPythonとUnityで巨大な立体迷路を作成する - Qiita

                                                                                このようなゲームを作りました。基本的には迷路のゲームです。 サイトのリンク 本記事ではこのゲームの製作過程を掲載すると共に、きっと有益にな情報をまとめます。楽しんで頂けたら幸いです。 Step0 前提 まず用語を整理します。 Blender : 3DCG制作ソフト。Pythonによって操作が可能になっています。 Python : 言わずと知れた有名プログラミング言語。 Unity : ゲーム制作ソフト。スタート画面の表示やゲームオーバーの判定などをしてくれます。言語はC#です。 大まかな流れとしては、 Step1. Blenderで3Dオブジェクトを作成 Step2. Pythonでそれを迷路に組み立てる Step3. Unityでゲームとして完成させる という風になっています。 コードに関しては、読みやすさも考え記事中においては一部抜粋に留めています。もし全体のコードを知りたい場合はプル

                                                                                  BlenderとPythonとUnityで巨大な立体迷路を作成する - Qiita
                                                                                • データカタログにNotionを選択した理由

                                                                                  実装方法 冪等性を担保したGoogle Cloud Composerの設計と実装で紹介しているとおり、Luupのデータ基盤はGoogle Cloud Composerを軸に動いています。なので今回も、Google Cloud Composerの環境下に作りました。 アウトプットイメージは以下です。 以下のNotion APIのDocumentを参考に実装を進めていきます。 サンプルコードも豊富で、説明も丁寧なので簡単に実装できました。 以下、コード一例です。 # Notionのフォーマットに変換するメソッド def format_standard_property_value(self, property_name: str, value: str): if property_name == "title": return {"title": [{"text": {"content": v

                                                                                    データカタログにNotionを選択した理由