並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 520件

新着順 人気順

python if none not in listの検索結果1 - 40 件 / 520件

  • 日本のウェブデザインの特異な事例

    sabrinas.spaceより。 8週間もかからなかったはずのプロジェクト 日本のウェブデザインはどう違うのか? 2013年のRandomwireのブログ投稿で、著者(David)は、日本のデザインの興味深い相違点を強調しました。日本人はミニマリストのライフスタイルで海外に知られていますが、ウェブサイトは奇妙なほどマキシマリストです。ページには様々な明るい色(3色デザイン原則を破っている)、小さな画像、そして多くのテキストが使われています。2022年11月に撮影されたこれらのスクリーンショットで、自分の目で確かめて下さい。 ブログ投稿には、文化的専門家、デザイナー仲間、そして不満を抱く市民によって支持されている、考えられる理由がいくつか挙げられていました。 この理論が今でも正しいのか、また、もっと定量的なアプローチが可能なのか気になったのでやってみました。 私が見つけたもの 各国の最も人

      日本のウェブデザインの特異な事例
    • Command Line Interface Guidelines

      Contents Command Line Interface Guidelines An open-source guide to help you write better command-line programs, taking traditional UNIX principles and updating them for the modern day. Authors Aanand Prasad Engineer at Squarespace, co-creator of Docker Compose. @aanandprasad Ben Firshman Co-creator Replicate, co-creator of Docker Compose. @bfirsh Carl Tashian Offroad Engineer at Smallstep, first e

        Command Line Interface Guidelines
      • 退屈なことはPythonにやらせよう 第2版

        一歩先行くハイパフォーマンスなビジネスパーソンからの圧倒的な支持を獲得し、自作RPA本の草分けとして大ヒットしたベストセラー書の改訂版。劇的な「業務効率化」「コスト削減」「生産性向上」を達成するには、単純な繰り返し作業の自動化は必須です。本書ではWordやExcel、PDF文書の一括処理、Webサイトからのダウンロード、メールやSMSの送受信、画像処理、GUI操作といった日常業務でよく直面する面倒で退屈な作業を、Pythonと豊富なモジュールを使って自動化します。今回の改訂では、GmailやGoogleスプレッドシートの操作、Pythonと各種モジュールの最新版への対応、演習等を増補しています。日本語版では、PyInstallerによるEXEファイルの作成方法を巻末付録として収録しました。 関連ファイル サンプルコード 正誤表 書籍発行後に気づいた誤植や更新された情報を掲載しています。お手

          退屈なことはPythonにやらせよう 第2版
        • 日本株3700社以上を分析。yfinance x「わが投資術」株式スクリーニングアプリを作った話(バイブコーディング)

          いきなりですが。 海外旅行したり働き始めたりすると、日本の良さが身に染みたと感じた人は多いんじゃないでしょうか? なんかとりあえず外で働いてみたいと思っていましたが、今はいつ戻るかと考える日々です。(とにかく温泉に入りたい) また色々と各国を回る中で、日本企業ってアジア圏や他の国にもかなり進出してるんだなぁと実感しました。(そりゃそう) そんなこんなで日本株に興味を持ち 昨年にわが投資術を購入して実践し始めました。(まだ初めて一年目なので成績はわかりません。。。が、マイナスは無し) 自分でバフェットコードや Claude mcp-yfinance などを利用しながらスクリーニングしてみましたが、毎回決算が出るたびに手動とチャット相手にあるのも何かなぁ。と思いまして。 じゃあ自動収集とスクリーニング用のアプリ作ってみよう(vibe coding) そんなノリから、日本株全銘柄を自動収集・簡易

            日本株3700社以上を分析。yfinance x「わが投資術」株式スクリーニングアプリを作った話(バイブコーディング)
          • Ubuntu 24.04 LTS サーバ構築手順書

            0 issue "letsencrypt.org" 0 issuewild "letsencrypt.org" 0 iodef "mailto:yourmail@example.jp" §OS再インストール 初期設定で期待通りの設定ができていない場合は、OSの再インストールをする。 さくらVPSのコントロールパネルから、OSを再インストールするサーバを選ぶ。 www99999ui.vs.sakura.ne.jp §OSのインストール操作 Ubuntu 24.04 LTS を選ぶ。 OSインストール時のパケットフィルタ(ポート制限)を無効にして、ファイアウォールは手動で設定することにする。 初期ユーザのパスワードに使える文字が制限されているので、ここでは簡単なパスワードにしておき、後ですぐに複雑なパスワードに変更する。 公開鍵認証できるように公開鍵を登録しておく。 §秘密鍵と公開鍵の作成 ク

              Ubuntu 24.04 LTS サーバ構築手順書
            • OpenAI API の ファインチューニングガイド|npaka

              1. ファインチューニングの利点ファインチューニングの利点は、次のとおりです。 (1) プロンプトよりも高品質な応答 (2) プロンプトに収まりきらないより多くの例の適用 (3) プロンプトの短縮によるトークン数 (コスト) の節約 (4) プロンプトの短縮による処理時間の短縮 モデルは膨大な量のテキストで事前学習されており、このモデルを効果的に利用するため、プロンプトに手順や応答の例を指定する手法が使われます。この例を使用してタスクの実行方法を示すことを「Few-Shot」と呼びます。 ファインチューニングで、プロンプトに収まりきらないより多くの例で学習することにより、さまざまなタスクでより良い結果を達成できるようになります。プロンプトに多くの例を指定する必要はなくなります。これによりトークン (コスト) が節約され、処理時間も短縮されます。 2. ファインチューニングの使用料金ファイン

                OpenAI API の ファインチューニングガイド|npaka
              • Youtubeは無限のクラウドストレージ - Qiita

                みなさん、こんな経験はありませんか もちろんありますよね。ということで無料で無限にクラウドストレージを使う方法を考えました。(月額130円で50GBは破格だけど) Youtube好き 今回使うのはYoutubeです。ほぼ全員Youtubeを見たことあると思いますが、Youtubeに動画をあげたことがある人はあんまりいないんじゃないでしょうか。 なんとこのYoutube、動画のアップロード数に制限がありません!!!じゃあファイルを動画にしてアップロードしたら好きな時にダウンロードして使えるじゃん。 動画化の方法 ということでやっていきます。まず、ファイルを動画化する方法を考えます。 すべてのファイルはバイト列なので、そいつらをそのまま画像のピクセルにして、そいつらを動画にしたらいいんじゃないかというのが一番最初に思いつくと思いますが、それは甘いです。甘すぎます。 Youtubeに動画をアップ

                  Youtubeは無限のクラウドストレージ - Qiita
                • とほほのHaskell入門 - とほほのWWW入門

                  概要 Haskellとは 関数型言語 純粋関数型言語 インストール Haskell Stack Hello world 基本 予約語 コメント ブロック レイアウト 入出力 型 変数 数値 文字(Char) 文字列(String) エスケープシーケンス リスト([...]) タプル((...)) 演算子 関数 演算子定義 再帰関数 ラムダ式 パターンマッチ ガード条件 関数合成(.) 引数補足(@) 制御構文 do文 let文 if文 case文 where文 import文 ループ データ型 データ型(列挙型) データ型(タプル型) データ型(直和型) 新型定義 (newtype) 型シノニム (type) 型クラス (class) メイビー(Maybe) ファンクタ(Functor) アプリケイティブ(Applicative) モナド(Monad) モジュール (module) 高階関

                  • 【2020年】CTF Web問題の攻撃手法まとめ - こんとろーるしーこんとろーるぶい

                    はじめに 対象イベント 読み方、使い方 Remote Code Execution(RCE) 親ディレクトリ指定によるopen_basedirのバイパス PHP-FPMのTCPソケット接続によるopen_basedirとdisable_functionsのバイパス JavaのRuntime.execでシェルを実行 Cross-Site Scripting(XSS) nginx環境でHTTPステータスコードが操作できる場合にCSPヘッダーを無効化 GoogleのClosureLibraryサニタイザーのXSS脆弱性 WebのProxy機能を介したService Workerの登録 括弧を使わないXSS /記号を使用せずに遷移先URLを指定 SOME(Same Origin Method Execution)を利用してdocument.writeを順次実行 SQL Injection MySQ

                      【2020年】CTF Web問題の攻撃手法まとめ - こんとろーるしーこんとろーるぶい
                    • Pythonで理解するMCP(Model Context Protocol) | gihyo.jp

                      動作環境 Python 3.12 ライブラリの使用バージョン gradio 5.34.2 anthropic 0.54.0 mcp 1.9.4 python-dotenv 1.1.0 仮想環境とライブラリインストール % cd mcp-host-with-gradio % python3 -m venv venv % source venv/bin/activate (venv) % pip install gradio anthropic mcp dotenv .envファイルの設定 AnthropicのAPIキーが必要です。APIキーの作成は以下を参考にしてください。APIの利用には料金がかかりますが、API従量課金であれば5ドルから始めることが可能です。 Claudeを使い始める -Anthropic .env ANTHROPIC_API_KEY=xxxxxxxxxxxxxxxxxx

                        Pythonで理解するMCP(Model Context Protocol) | gihyo.jp
                      • FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ|ハイクラス転職・求人情報サイト アンビ(AMBI)

                        FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ PythonのWebフレームワークとしていま注目を集めるFastAPIは、シンプルにコードが書けるだけでなく、パフォーマンスが高いWebアプリケーションのバックエンドサーバーが構築可能です。同フレームワークの勘所をPythonスペシャリストの杜世橋さんが、初心者向けのハンズオン、そしてより実践的な画像への自動タグ付けサービス実装をとおして解説します。 FastAPIはいま非常に注目されているPythonのWebフレームワークの1つです。Flaskのようにシンプルに書ける一方でPythonのType Hintの機能をうまく活用し、HTTPのリクエスト/レスポンスをPythonの関数の引数/戻り値とシームレスにマッピングして非常に効率的に開発ができるのが最大の特徴です。非同期処理にも対応していてその名

                          FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ|ハイクラス転職・求人情報サイト アンビ(AMBI)
                        • Gemini 2.5 Proと取り組んだデータ分析のリアルな道のり - Nealle Developer's Blog

                          はじめに はじめまして。Analyticsチームの清水です。 2024年12月に入社しまして、約4ヶ月が経過しました。今回が初めてのテックブログになります。 ▼先日、入社エントリも公開しました。 本稿のテーマは、自由記述のテキストをラベリングして分類する分析タスクに対し、Geminiと共に取り組んで分かったことの共有です。 私は生成AIをそれほどたくさん使った経験があるわけではないので、これが最良の使い方というわけではないと思いますが、どのようにプロンプトを組み立て、どう効率的に分析を進められたのかを可能な限りリアルに書いていきます。 ※今回利用したモデルは、Gemini 2.5 Proです。 はじめに Geminiを活用したデータ分析の進め方 フェーズ0: アプローチの模索 - Notebook LMや教師なし学習の試行 フェーズ1: データ理解とラベルチェック - コード生成と探索的分

                            Gemini 2.5 Proと取り組んだデータ分析のリアルな道のり - Nealle Developer's Blog
                          • N番目の素数を求める - すぎゃーんメモ

                            SNSなどで話題になっていたので調べてみたら勉強になったのでメモ。 環境 Pythonでの実装例 例1 例2 例3 エラトステネスの篩 Rustでの実装例 試し割り法 エラトステネスの篩 アトキンの篩 おまけ: GMP Benchmark 高速化のテクニック 上限個数を見積もる Wheel factorization オチ Repository References 環境 手元のMacBook Pro 13-inchの開発機で実験した。 2.8 GHz Intel Core i7 16 GB 2133 MHz LPDDR3 Pythonでの実装例 例1 最も単純に「2以上p未満のすべての数で割ってみて余りが0にならなかったら素数」とする、brute force 的なアプローチ。 import cProfile import io import pstats import sys def m

                              N番目の素数を求める - すぎゃーんメモ
                            • LangChainを使わない - ABEJA Tech Blog

                              TL; DR LangChainのメリデメを整理する過程で、今となってはopenai-pythonのうちChatGPTのAPIをを簡単に取り回せる程度のシンプルなライブラリがあるだけでも十分便利なんじゃないかと思ったので、ライブラリを個人で作ってみました。(バージョン0.0.1なのでちょっとお粗末な所もありますが) github.com はじめに こんにちは、データサイエンティストの坂元です。ABEJAアドベントカレンダーの13日目の記事です。世は大LLM時代ということで、ありがたいことにABEJAでも複数のLLMプロジェクトを推進させて頂いています。私自身もいくつかのLLMプロジェクトに参画しています。LLMといえばLangChainが便利ですね。OpenAI APIの利用だけでなく、各種ドキュメントのパースが出来たり、HuggingFaceやインデックスDBを扱う他のライブラリとインテ

                                LangChainを使わない - ABEJA Tech Blog
                              • みんなのためのLLMアプリケーション開発環境の構築事例

                                はじめに こんにちは。Game Platform DevのDong Hun Ryoo、Takenaka、Zhang Youlu(Michael)、Hyungjung Leeです。私たちの組織は、ゲームパブリッシングに必要なさまざまな機能を開発・運用する役割を担っています。 私たちは最近、組織内の業務効率を高めるためにさまざまなLLM(large language model)アプリケーションを開発し、それと連携してLLMOpsシステムの構築プロジェクトを行いました。プロジェクトの主な目標の一つは、参入障壁が高いLLMアプリケーション開発を、職種に関係なく誰でも簡単に作成できる環境を構築することでした。そのため、さまざまなことを考えながら試行錯誤を経た結果、誰でも簡単にアクセスできる開発・デプロイ環境を整えました。 今回の記事では、LLMアプリケーションの一般的な開発方法と開発プロセスで直面

                                  みんなのためのLLMアプリケーション開発環境の構築事例
                                • LLMフレームワークのセキュリティリスク - LangChain, Haystack, LlamaIndex等の脆弱性事例に学ぶ - GMO Flatt Security Blog

                                  はじめに こんにちは。GMO Flatt Security株式会社セキュリティエンジニアの森(@ei01241)です。 近年、大規模言語モデル(LLM)の進化により、チャットボット、データ分析・要約、自律型エージェントなど、多岐にわたるAIアプリケーション開発が進んでいます。LangChainやLlamaIndexのようなLLMフレームワークは、LLM連携や外部データ接続などを抽象化し開発効率を向上させる一方、その利便性の背後には新たなセキュリティリスクも存在します。 本稿では、LLMフレームワークを利用・開発する際に発生しやすい脆弱性を具体的なCVEを交えて解説し、それぞれ脆弱性から教訓を学びます。そして、それらの教訓から開発者が知っておくべき対策案についても紹介します。 また、GMO Flatt SecurityはLLMを活用したアプリケーションに対する脆弱性診断・ペネトレーションテス

                                    LLMフレームワークのセキュリティリスク - LangChain, Haystack, LlamaIndex等の脆弱性事例に学ぶ - GMO Flatt Security Blog
                                  • MCP(Model Context Protocol)を活用したJグランツ補助金検索システムの実装例|デジタル庁

                                    デジタル庁プロダクトマネージャーユニットの土岐竜一です。事業者の手続システム総括班で、Jグランツを含む事業者向けシステムなどを担当しています。 この記事では、デジタル庁が運用する補助金電子申請システム「Jグランツ」のAPIを、Anthropic社が提唱するModel Context Protocol(MCP) によりラッピングし、LLMから利用可能なシステムのサンプル設計および実装について説明します。 具体的には、Pythonで簡単に実装できるFastMCPフレームワークを利用し、Jグランツの補助金検索や詳細の取得などの実用的な機能を備えたMCPサーバーを例として実装します。なお、本記事におけるコードはGitHubよりダウンロード可能です。 本実装例で実現できること今回紹介するMCPサーバーを利用すると、LLM(Claudeなど)を通じて、以下のような自然言語によるJグランツの補助金検索や

                                      MCP(Model Context Protocol)を活用したJグランツ補助金検索システムの実装例|デジタル庁
                                    • Python普及しろ協会に入会したい

                                      この記事はタナイ氏によるPython滅ぼす協会に入会したいを読んでから執筆したものです。 この記事の趣旨はPython滅ぼす協会に入会したいに対する反論という形をとりながら、タナイ氏により「バカの言語」と揶揄され、「使ってエンジニアを名乗るというのは」「滑稽」とまで言われたPythonの立場を再考することです。 追記 本記事は「Pythonはこれだけ優れた言語だからみんな使おう!」というものではなく「言うほど酷くないと思うよ」程度のものです。 型アノテーションがあるからと言って静的型付けを軽視しているわけでもなければ、map関数をもってmapメソッドを不要だと言っているわけでもありません。 この記法は嫌い〜この記法が好き〜と表明することは個人の自由ですが、同様に「この記法は実はこういう意味があって〜」という意見があればそれを聞いた上で、物事を判断して欲しいです。もちろん、聞いても意見が変わ

                                        Python普及しろ協会に入会したい
                                      • Writing Python like it’s Rust

                                        You can check out a YouTube recording of a talk based on this blog post. I started programming in Rust several years ago, and it has gradually changed the way I design programs in other programming languages, most notably in Python. Before I started using Rust, I was usually writing Python code in a very dynamic and type-loose way, without type hints, passing and returning dictionaries everywhere,

                                        • Python最新バージョン対応!より良い型ヒントの書き方 | gihyo.jp

                                          寺田 学です。9月の「Python Monthly Topics」は、Python 3.5で導入され、多くの場面で活用されている型ヒント(Type Hints)について、より良い型ヒントの書き方を紹介します。 Pythonの型ヒントとは Pythonは動的型付け言語です。型を指定せずに変数宣言できますし、関数の引数や戻り値に型を宣言する必要はありません。 Python 3.5(2015年9月リリース)で型ヒントの仕組みが入りました。型の指定が不要なPythonですが、型ヒントを付けることで、「⁠コードの可読性向上⁠」⁠、「⁠IDEコード補完の充実⁠」⁠、「⁠静的型チェックの実行」といった静的型付け言語のようなメリットを得ることができます。 Pythonの型ヒントは以下のように記述します。 name: str = "氏名" # 変数nameをstr型と宣言 def f(arg: int) -

                                            Python最新バージョン対応!より良い型ヒントの書き方 | gihyo.jp
                                          • Pythonプロジェクトを快適にするために導入したツールとその設定 | DevelopersIO

                                            start: if [ -n "${ENV}" ]; then \ .venv/bin/dotenv --file ${ENV} run -- .venv/bin/python src/main.py; \ lint: poetry run pysen run lint lint-fix: poetry run pysen run format && \ poetry run pysen run lint test-unit: poetry run pytest install-dev: poetry install install: poetry install --no-dev 本番環境のみ入れたいパッケージがある場合 IoT開発等では、開発時はMacで本番はラズパイみたいなケースの場合、アーキテクチャ依存で追加できないパッケージがあったりします。 例えばRPi.GPIOは、GPIOが

                                              Pythonプロジェクトを快適にするために導入したツールとその設定 | DevelopersIO
                                            • Microsoft Power Automate DesktopでRPAを実現してみる | 🌴 officeの杜 🥥

                                              自分自身の個人的意見としては、エンドユーザコンピューティングは大いに結構だと思ってるけれど、一方で日本でジリジリと熱さが消えつつある国内の有象無象のRPAについては滅んだほうが良いとも思ってる。理由は後述するとして、本日良いニュースが発表されました。Power Automate Desktopについて追加費用無し無償で利用可能になるとのこと。これは既にあるMicrosoft365のEnterpriseプランなどに標準で利用できてるPower Automateのデスクトップ版のようで、Windows10に標準でついてくるようになるとのこと。 ということで、現時点のMicrosoft365で使えてるPower Automate Desktopを使ってみて、どんな感じなのか?またリリース後にその違いなどをここに記述していこうかなと思っています。また、Seleniumベースのウェブ自動化についても

                                                Microsoft Power Automate DesktopでRPAを実現してみる | 🌴 officeの杜 🥥
                                              • Announcing New Tools for Building with Generative AI on AWS | Amazon Web Services

                                                Artificial Intelligence Announcing New Tools for Building with Generative AI on AWS The seeds of a machine learning (ML) paradigm shift have existed for decades, but with the ready availability of scalable compute capacity, a massive proliferation of data, and the rapid advancement of ML technologies, customers across industries are transforming their businesses. Just recently, generative AI appli

                                                  Announcing New Tools for Building with Generative AI on AWS | Amazon Web Services
                                                • GPT-5 の新パラメータとツール|npaka

                                                  以下の記事が面白かったので、簡単にまとめました。 ・GPT-5 New Params and Tools - OpenAI Cookbook 1. verbosity1-1. 概要「verbosity」は、出力トークン数を調節できます。 ・low : 簡潔なUX、簡潔な文章 ・medium (デフォルト) : バランスの取れた詳細 ・high : 詳細な情報。監査、教育、引き継ぎに最適 1-2. verbosityの効果の確認プロンプトを一定に保ったまま、「verbosity」を変更することで、効果を確認できます。 response = client.responses.create( model="gpt-5", input="人生、宇宙、そして万物に関する究極の問いに対する答えは何でしょうか?", text={ "verbosity": "low" } ) print(response

                                                    GPT-5 の新パラメータとツール|npaka
                                                  • DuckDB でハイブリッド検索

                                                    DuckDB を利用してベクトル検索と日本語全文検索の両方を同時に利用できます。さらにこれらの結果をマージして Reranking を行うことでハイブリッド検索をサクサクっと実現する事が​できます。 Rerankerどうやらベクトル検索した結果と日本語全文検索した結果をマージして、クエリーとマージ結果を再度ランキング付けする仕組みのようです。 ここでは参考にした記事を共有する程度にしておきます。 日本語最高性能のRerankerをリリース / そもそも Reranker とは? - A Day in the Lifeリランキング モデルによる RAG の日本語検索精度の向上 - NVIDIA 技術ブログ今回は Reranker に hotchpotch/japanese-reranker-cross-encoder-large-v1 を利用しました。 以下は参考コードです。 [projec

                                                      DuckDB でハイブリッド検索
                                                    • What it was like working for GitLab

                                                      I joined GitLab in October 2015, and left in December 2021 after working there for a little more than six years. While I previously wrote about leaving GitLab to work on Inko, I never discussed what it was like working for GitLab between 2015 and 2021. There are two reasons for this: I was suffering from burnout, and didn't have the energy to revisit the last six years of my life (at that time)I w

                                                      • ぼくのMac環境 ver.のんピ | DevelopersIO

                                                        何年後かの自分へ こんにちは、のんピ(@non____97)です。 業務で使用する新しいMacが届きました。 新しいMacを初期セットアップするにあたって「今の設定どうだったっけ...」と調べる時間が結構かかってしまいました ということで何年後かの自分がまた新しいMacに乗り換える際に手間取らないように、設定した内容を書き記しておきます。 移行先のMacの情報は以下の通りです。M1 Max、嬉しい。 # OSのバージョンの確認 > sw_vers ProductName: macOS ProductVersion: 12.4 BuildVersion: 21F79 # カーネルのバージョン確認 > uname -r 21.5.0 # CPUのアーキテクチャの確認 > uname -m arm64 # CPUの詳細確認 > sysctl -a machdep.cpu machdep.cpu.

                                                          ぼくのMac環境 ver.のんピ | DevelopersIO
                                                        • ElasticsearchとKibela APIを使ってSlackでのCSお問い合わせ対応業務を改善した話 - BASEプロダクトチームブログ

                                                          この記事はBASE Advent Calendar 2020の11日目の記事です。 devblog.thebase.in BASE株式会社 Data Strategy チームの@tawamuraです。 BASEではオーナーの皆様や購入者様のお問い合わせに対して、Customer Supportチームが主となって対応をしています。その中でもいくつかの技術的なお問い合わせに対しては、以下のようにSlackの専用チャンネルを通して開発エンジニアに質問を投げて回答を作成することになっています。 CSチームから調査を依頼されるお問い合わせの例 これらのCS問い合わせ対応は日々いくつも発生しており、CSお問い合わせ対応を当番制にして運用してみた話 でもあるように週ごとに持ち回り制で各部門のエンジニアが対応しているのですが、どうしても調査や対応に時間が取られてしまうという問題が発生していました。 dev

                                                            ElasticsearchとKibela APIを使ってSlackでのCSお問い合わせ対応業務を改善した話 - BASEプロダクトチームブログ
                                                          • OOP: the worst thing that happened to programming

                                                            > BTC: bc1qs0sq7agz5j30qnqz9m60xj4tt8th6aazgw7kxr ETH: 0x1D834755b5e889703930AC9b784CB625B3cd833E USDT(Tron): TPrCq8LxGykQ4as3o1oB8V7x1w2YPU2o5n Ton: UQAtBuFWI3H_LpHfEToil4iYemtfmyzlaJpahM3tFSoxomYQ Doge: D7GMQdKhKC9ymbT9PtcetSFTQjyPRRfkwTdismiss OOP: the worst thing that happened to programming [2/24/2025] In this article, we will try to understand why OOP is the worst thing that happened to prog

                                                              OOP: the worst thing that happened to programming
                                                            • Excel、Excel VBA をGitで管理する - Qiita

                                                              Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? はじめに 可能な限り避けたいのですが、稀に大量のExcelやExcel VBAを管理しなくてはならないときってありませんか? App Scriptであれば、まだ管理する方法は幾つかあります。 しかし、ExcelやExcel VBAだと管理する方法が無く、どこかクラウド上のドライブで保管する。に行き着くことが多いです。 なにか良い管理方法はないかと色々と考えた結果、やはりGitで管理するのが良さそうだと思ったので、記事にしました。 Excel、Excel VBAをGitで管理する Excel、Excel VBAをGitで管理すると、結局バ

                                                              • 第850回 UbuntuにおけるシステムPythonと、Pythonの仮想環境を使い分ける方法 | gihyo.jp

                                                                バージョンについては2025年2月時点での数字です。UbuntuのシステムPythonの場合、同じリリースでもマイクロバージョン(X.Y.Zの「Z」の部分)についてはアップグレードされることがあります。 UbuntuではもともとPython 2を使っていました。その後、Python 3へと段階的に移行し、2017年10月にリリースされた17.10からデスクトップ版でもPython 2が標準ではインストールされなくなりました。それからもPython 2のパッケージ自体は存在したのですが、2024年4月の24.04までにPython 2関連パッケージはすべてインストールできないようになっています。 ちなみにリリースによっては、「⁠複数のバージョンのPython」を提供していることもあります。たとえばUbuntu 22.04 LTSのシステムPythonのバージョンは3.10.6ですが、「⁠py

                                                                  第850回 UbuntuにおけるシステムPythonと、Pythonの仮想環境を使い分ける方法 | gihyo.jp
                                                                • Terraformとdriftctlで行うGoogle Cloud 権限管理の省力化 - ZOZO TECH BLOG

                                                                  はじめに こんにちは、ML・データ部MLOpsブロックの岡本です。 MLOpsブロックでは日々複数のGoogle Cloudプロジェクトを管理しています。これらのプロジェクトでは、データサイエンティストやプロジェクトマネージャーなど別チームのメンバーが作業することもあり、必要に応じてメンバーのGoogleアカウントへ権限を付与しています。 権限の付与はプロジェクトの管理者であるMLOpsブロックメンバーが行いますが、これは頻繁に発生する作業でありトイルとなっていました。 また権限付与後はこれらを継続的に管理し、定期的に棚卸しすることで不要になった権限を削除する必要があります。しかし当初の運用だと権限の棚卸しの対応コストが大きく、これが実施されずに不要な権限が残り続けるという課題もありました。 本記事ではMLOpsブロックで抱えていたGoogle Cloudプロジェクト内での権限管理における

                                                                    Terraformとdriftctlで行うGoogle Cloud 権限管理の省力化 - ZOZO TECH BLOG
                                                                  • Python×株式投資:従来の100倍!銘柄選抜のバックテストを高速化した話 - Qiita

                                                                    # ----------------------------- # 2nd Screening V1 # ----------------------------- import time global_start_time = time.time() from google.colab import drive drive.mount('/content/drive') import pandas as pd import numpy as np import os from tqdm.notebook import tqdm import yfinance as yf from curl_cffi import requests # -------------------------------------------------- # ヘルパー関数定義セクション # --------

                                                                      Python×株式投資:従来の100倍!銘柄選抜のバックテストを高速化した話 - Qiita
                                                                    • GPT in 60 Lines of NumPy | Jay Mody

                                                                      January 30, 2023 In this post, we'll implement a GPT from scratch in just 60 lines of numpy. We'll then load the trained GPT-2 model weights released by OpenAI into our implementation and generate some text. Note: This post assumes familiarity with Python, NumPy, and some basic experience with neural networks. This implementation is for educational purposes, so it's missing lots of features/improv

                                                                      • 【ChatGPT】GPT-4でPythonの画像ビューワを作成してみた | DevelopersIO

                                                                        新規事業統括部の山本です。 今日OpenAIのChatGPTのモデルとして、GPT-4が利用可能になりました。早速使ってみようと思います。 やってみる 今回は画像のビューワを作成してみます。ちょうどデータセットの画像や、画像モデルに入力した結果を表示するツールがほしいと思っていました。 import os import tkinter as tk from tkinter import filedialog from PIL import Image, ImageTk def browse_folder(): folder_path = filedialog.askdirectory() if not folder_path: return images_frame.delete("all") load_images(folder_path) def load_images(folder_

                                                                          【ChatGPT】GPT-4でPythonの画像ビューワを作成してみた | DevelopersIO
                                                                        • Amazon Linux 2023がGAされました | DevelopersIO

                                                                          抜粋 : Release cadence - Amazon Linux 2023 メジャーリリースとマイナーリリースの内容は以下AWS公式ドキュメントに記載されています。メジャーリリース時には互換性があるか十分に検証した上でアップデートしましょう。 Major version release— Includes new features and improvements in security and performance across the stack. The improvements might include major changes to the kernel, toolchain, Glib C, OpenSSL, and any other system libraries and utilities. Major releases of Amazon Linux ar

                                                                            Amazon Linux 2023がGAされました | DevelopersIO
                                                                          • 【Python実践編】ビットコインのアービトラージ(裁定取引)コード例 - Qiita

                                                                            [8/27追記] 投資関連のPythonプラグラム等を自由にシェアできるサービスのベータ版を作成しました。 興味がある方は覗いてみてください↓ inbaseシェア|EA・bot・プログラムのシェアサービス この投稿では、Python3を使って仮想通貨の裁定取引を行います。 今回は、コインチェックとGMOコインの価格差を利用してサヤ抜きを行うことを目指します。 以前自分のブログで、 【Pythonデモコード】仮想通貨のアービトラージ(裁定取引)botの作り方 という記事を公開したのですが、こちらはあくまでもシュミレーションで実際に売買が作動することはありませんでした。 今回は実際に取引所のAPIを操作するところまでコートに組み込んでみました。 なおコインチェックと GMO コインの口座開設から API キーの発行までは下の記事で公開している手順と全く同じです。 一応画像付きで解説しているので

                                                                              【Python実践編】ビットコインのアービトラージ(裁定取引)コード例 - Qiita
                                                                            • DMARCレポートの可視化ダッシュボードを作りました - LIVESENSE ENGINEER BLOG

                                                                              はじめに そもそもDMARCって何? Googleの発表によってDMARC対応が必要に SaaSの検討 OSSの検討・選定 構成 動作 GmailからGoogle Driveへ格納する XMLをパースしてOpenSearchに格納する Google Driveからコンテナ内にダウンロードする パースと格納 可視化 苦労した点 Gmailの仕様とparsedmarcの相性が悪い OpenSearch突然データが全部消えた 作ってみてよかったこと 今後の運用 はじめに インフラGの鈴木です。ガールズケイリンアニメことリンカイ!の放映が近くなってきましたね。 最近小倉にギャンブル旅行にいったのですが、北九州競輪には等身大パネルがありました。本気(マジ)度が伝わってきます。アニメの放映日が楽しみです。 ところで、今回はDMARCの可視化基盤を作った話をします。なかなか大変1でしたので、共有したいと

                                                                                DMARCレポートの可視化ダッシュボードを作りました - LIVESENSE ENGINEER BLOG
                                                                              • ClaudeのMCPを徹底解説! & gpt-4o+MCP+YouTube APIの動画推薦チャットAIも作る - Qiita

                                                                                mcp_server_youtube という名前にしました。 mcp_server_youtube というディレクトリができます。 mcp_server_youtube/src/mcp_server_youtube/server.py にサーバー実装を記述します。 実装 MCPサーバーの実装はほとんどgpt-4oを使って行いました。 ポイント 今回はこのサーバーに登録されたツールが youtube-search のみなので、handle_call_tool に到着したリクエストが youtube-search と一致している場合のみ処理行います YouTube Data API v3 は単純にAPIを実装するだけです これの嬉しさ 普通にfunction callingからAPIを叩くだけなら、MCPサーバーはいりません。ただ、独立したMCPサーバーとして作ることで再利用がしやすい形になり

                                                                                  ClaudeのMCPを徹底解説! & gpt-4o+MCP+YouTube APIの動画推薦チャットAIも作る - Qiita
                                                                                • 【Python 3.12】型ヒント機能がいつの間にか進化していたので、慌ててキャッチアップする - ABEJA Tech Blog

                                                                                  ABEJA でプロダクト開発を行っている平原です。 先日、バックエンドで使っているGo言語のお勉強しようと「go言語 100Tips ありがちなミスを把握し、実装を最適化する」を読んでいました。その中でinterfaceは(パッケージを公開する側ではなく)受け側で定義するべきという記述を見つけてPythonでも同じことできないかと調べていると(PythonではProtocolを使うとうまくいきそうです。)、どうやら型ヒント機能がかなりアップデートされていることに気づき慌てて再入門しました。(3.7, 3.8あたりで止まってました。。) この記事では、公式ドキュメントを見ながら適当にコードを書き散らし、どの機能はどこまで使えるのか試してみたことをまとめてみました。 docs.python.org 環境 Python: 3.12.1 エディタ: Visual Studio Code Pylan

                                                                                    【Python 3.12】型ヒント機能がいつの間にか進化していたので、慌ててキャッチアップする - ABEJA Tech Blog