並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 1298件

新着順 人気順

python if or in listの検索結果1 - 40 件 / 1298件

  • Command Line Interface Guidelines

    Contents Command Line Interface Guidelines An open-source guide to help you write better command-line programs, taking traditional UNIX principles and updating them for the modern day. Authors Aanand Prasad Engineer at Squarespace, co-creator of Docker Compose. @aanandprasad Ben Firshman Co-creator Replicate, co-creator of Docker Compose. @bfirsh Carl Tashian Offroad Engineer at Smallstep, first e

      Command Line Interface Guidelines
    • 日本株3700社以上を分析。yfinance x「わが投資術」株式スクリーニングアプリを作った話(バイブコーディング)

      いきなりですが。 海外旅行したり働き始めたりすると、日本の良さが身に染みたと感じた人は多いんじゃないでしょうか? なんかとりあえず外で働いてみたいと思っていましたが、今はいつ戻るかと考える日々です。(とにかく温泉に入りたい) また色々と各国を回る中で、日本企業ってアジア圏や他の国にもかなり進出してるんだなぁと実感しました。(そりゃそう) そんなこんなで日本株に興味を持ち 昨年にわが投資術を購入して実践し始めました。(まだ初めて一年目なので成績はわかりません。。。が、マイナスは無し) 自分でバフェットコードや Claude mcp-yfinance などを利用しながらスクリーニングしてみましたが、毎回決算が出るたびに手動とチャット相手にあるのも何かなぁ。と思いまして。 じゃあ自動収集とスクリーニング用のアプリ作ってみよう(vibe coding) そんなノリから、日本株全銘柄を自動収集・簡易

        日本株3700社以上を分析。yfinance x「わが投資術」株式スクリーニングアプリを作った話(バイブコーディング)
      • This is The Entire Computer Science Curriculum in 1000 YouTube Videos

        This is The Entire Computer Science Curriculum in 1000 YouTube Videos In this article, we are going to create an entire Computer Science curriculum using only YouTube videos. The Computer Science curriculum is going to cover every skill essential for a Computer Science Engineer that has expertise in Artificial Intelligence and its subfields, like: Machine Learning, Deep Learning, Computer Vision,

          This is The Entire Computer Science Curriculum in 1000 YouTube Videos
        • ChatGPT(GPT-4) で一撃でスクレイピングするコードを生成出来たので感想とコツ - Qiita

          今回やりたかったこと 目標:ChatGPT(GPT-4) で一撃でスクレイピングするコードを生成 するにはどうしたらいいのか、ChatGPT のハードルとかコツとかを知りたい。 ※最終的なプロンプトの入力と出力の全文は本ページ下部に貼り付けてます。 作ったもの概要 保険組合のウォーキングイベントの会社内の3チームの歩数進捗の slack への自動投稿 bot を作成しました。 処理は大きく2つに分かれています。 ウォーキングイベントサイトから歩数をスクレイピング&スプシへアップロード スプシの GAS で投稿文字列作成& slack へ自動投稿 今回 ChatGPT でやったのは1の方です。 2は前回半年前開催分のコードをほぼそのまま流用しました。 運良く(?)今回のタイミングでウォーキングイベントのサービスサイトが変わり、 HTML がまるっと変わり1のスクレイピングコードは作り直しが必

            ChatGPT(GPT-4) で一撃でスクレイピングするコードを生成出来たので感想とコツ - Qiita
          • PDFを高品質なマークダウンに変換する方法|すぅ | AI駆動PM

            PDFファイルをマークダウンに変換する作業って、地味だけど本当に大切な作業ですよね。 「また手作業でコピペか...」 「レイアウトが崩れてる...」 「表がめちゃくちゃになってる...」 私もさまざまな文書管理の現場で同じような課題に直面してきました。特に、既存のPDF資料をObisidianやNotionなどのマークダウン形式で管理したい場面って、本当に多いですよね。 手作業でやると、一つの文書だけで数時間かかることもあります。表や画像の配置を調整して、リンクを張り直して、フォーマットを整えて...。骨が折れる作業です。 「もっと効率的な方法はないだろうか?」 そう思っていた矢先、いくつかの優秀な手法を発見しました。今回は、スキルレベル別に4つのアプローチをご紹介したいと思います。 【各レベルの概要】まず、それぞれのアプローチの特徴を簡単にご紹介しておきますね。 レベル1:GPT-5でシ

              PDFを高品質なマークダウンに変換する方法|すぅ | AI駆動PM
            • 本番環境で採用すべき26のAWSセキュリティベストプラクティス

              本文の内容は、2024年11月25日に Alejandro Villanueva が投稿したブログ(https://sysdig.com/blog/26-aws-security-best-practices/)を元に日本語に翻訳・再構成した内容となっております。 セキュリティは、 AWS Foundational セキュリティベストプラクティスの基本的な柱です。セキュリティリスクを最小限に抑え、環境を保護するには、サービス別にまとめられた AWS セキュリティベストプラクティスに従うことが不可欠です。この構造化されたアプローチは、潜在的な脆弱性に積極的に対処し、堅牢で安全なクラウドアーキテクチャーを維持するのに役立ちます。 AWS IAM(1) IAMポリシーでは、フルの ” * ” 管理者権限を許可すべきではない (2) IAMユーザーにはIAMポリシーを添付してはならない (3) I

                本番環境で採用すべき26のAWSセキュリティベストプラクティス
              • Ubuntu 24.04 LTS サーバ構築手順書

                0 issue "letsencrypt.org" 0 issuewild "letsencrypt.org" 0 iodef "mailto:yourmail@example.jp" §OS再インストール 初期設定で期待通りの設定ができていない場合は、OSの再インストールをする。 さくらVPSのコントロールパネルから、OSを再インストールするサーバを選ぶ。 www99999ui.vs.sakura.ne.jp §OSのインストール操作 Ubuntu 24.04 LTS を選ぶ。 OSインストール時のパケットフィルタ(ポート制限)を無効にして、ファイアウォールは手動で設定することにする。 初期ユーザのパスワードに使える文字が制限されているので、ここでは簡単なパスワードにしておき、後ですぐに複雑なパスワードに変更する。 公開鍵認証できるように公開鍵を登録しておく。 §秘密鍵と公開鍵の作成 ク

                  Ubuntu 24.04 LTS サーバ構築手順書
                • OpenAI API の ファインチューニングガイド|npaka

                  1. ファインチューニングの利点ファインチューニングの利点は、次のとおりです。 (1) プロンプトよりも高品質な応答 (2) プロンプトに収まりきらないより多くの例の適用 (3) プロンプトの短縮によるトークン数 (コスト) の節約 (4) プロンプトの短縮による処理時間の短縮 モデルは膨大な量のテキストで事前学習されており、このモデルを効果的に利用するため、プロンプトに手順や応答の例を指定する手法が使われます。この例を使用してタスクの実行方法を示すことを「Few-Shot」と呼びます。 ファインチューニングで、プロンプトに収まりきらないより多くの例で学習することにより、さまざまなタスクでより良い結果を達成できるようになります。プロンプトに多くの例を指定する必要はなくなります。これによりトークン (コスト) が節約され、処理時間も短縮されます。 2. ファインチューニングの使用料金ファイン

                    OpenAI API の ファインチューニングガイド|npaka
                  • The Best Programmers I Know | Matthias Endler

                    I have met a lot of developers in my life. Lately, I asked myself: “What does it take to be one of the best? What do they all have in common?” In the hope that this will be an inspiration to someone out there, I wrote down the traits I observed in the most exceptional people in our craft. I wish I had that list when I was starting out. Had I followed this path, it would have saved me a lot of time

                      The Best Programmers I Know | Matthias Endler
                    • 【2020年】CTF Web問題の攻撃手法まとめ - こんとろーるしーこんとろーるぶい

                      はじめに 対象イベント 読み方、使い方 Remote Code Execution(RCE) 親ディレクトリ指定によるopen_basedirのバイパス PHP-FPMのTCPソケット接続によるopen_basedirとdisable_functionsのバイパス JavaのRuntime.execでシェルを実行 Cross-Site Scripting(XSS) nginx環境でHTTPステータスコードが操作できる場合にCSPヘッダーを無効化 GoogleのClosureLibraryサニタイザーのXSS脆弱性 WebのProxy機能を介したService Workerの登録 括弧を使わないXSS /記号を使用せずに遷移先URLを指定 SOME(Same Origin Method Execution)を利用してdocument.writeを順次実行 SQL Injection MySQ

                        【2020年】CTF Web問題の攻撃手法まとめ - こんとろーるしーこんとろーるぶい
                      • 日々のExcel管理を効率化するPythonスクリプトをChatGPTに作ってもらう - Taste of Tech Topics

                        最近は朝型にシフトしてウォーキングを始めました。菅野です。 皆さんは日々の業務でどれぐらいExcelを用いているでしょうか? 表計算ソフトであるExcelですが、計算のみならず、グラフ描画や、文章を表形式でまとめたり、マニアックな使い方ではアニメーションの作成までできてしまいます。 エンジニア以外の方も業務で使用することが多いのではないでしょうか? しかしながら、業務上でExcelを用いると、日々の煩雑な作業が多くなりやすい印象です。 エンジニアであればVBA等を調べてマクロを作るといったことも可能ですが、一般の人にはハードルが高くなってしまいがちです。 今回はそんなExcelを用いた業務をChatGPTにPythonスクリプトを作ってもらうことで効率化してみましょう。 今回のテーマではGPT-4のモデルを使用します。 また、CodeInterpreterで対象のExcelファイルを読み込

                          日々のExcel管理を効率化するPythonスクリプトをChatGPTに作ってもらう - Taste of Tech Topics
                        • CPUエミュレータをRustで自作する - Don't Repeat Yourself

                          この記事は Rust Advent Calendar 2020 ならびに CyberAgent Developers Advent Calendar 25日目の記事です。 今年のはじめの頃になりますが、『CPUの創り方』という本に載っている TD4 という CPU を実装してみました。TD4 は「とりあえず動作するだけの4bit CPU」の略です。この本に載っている CPU エミュレータを実際に実装してみました。ただし、本書には GUI が載っていましたが、それは省略しました。 CPUの創りかた 作者:渡波 郁発売日: 2003/10/01メディア: 単行本(ソフトカバー) 「最近話題の RISC-V などの CPU エミュレータを作ってみたいものの、いきなり作るにはハードルが高い。何か簡単なもので素振りをして CPU の動作の仕組みをまずは知りたい」という方にはかなりオススメできる教材だ

                            CPUエミュレータをRustで自作する - Don't Repeat Yourself
                          • Pythonで理解するMCP(Model Context Protocol) | gihyo.jp

                            動作環境 Python 3.12 ライブラリの使用バージョン gradio 5.34.2 anthropic 0.54.0 mcp 1.9.4 python-dotenv 1.1.0 仮想環境とライブラリインストール % cd mcp-host-with-gradio % python3 -m venv venv % source venv/bin/activate (venv) % pip install gradio anthropic mcp dotenv .envファイルの設定 AnthropicのAPIキーが必要です。APIキーの作成は以下を参考にしてください。APIの利用には料金がかかりますが、API従量課金であれば5ドルから始めることが可能です。 Claudeを使い始める -Anthropic .env ANTHROPIC_API_KEY=xxxxxxxxxxxxxxxxxx

                              Pythonで理解するMCP(Model Context Protocol) | gihyo.jp
                            • Webサーバの仕組みについて入門してみた(Python実装) - iimon TECH BLOG

                              はじめに 株式会社iimonでSREエンジニアをしているhogeです。 本記事はiimonアドベントカレンダー9日目の記事となります。 今回の記事は技術的な棚卸しとして、普段大変お世話になっているWebサーバがどういった仕組みで動いているのかを実装しながら深堀りしていこうと思います。 弊社のバックエンドはDjango/FastAPI + Gunicornの構成で動作しているため、Pythonを絡めた説明が多くなるかと思います。サンプルコードもPythonで実装をしています。 途中、システムコールやファイルディスクリプタなどにも踏み込んだ話をするのですが、低レベルなプログラミングをちゃんとやったことがないため、間違えている部分があるかもしれません。今後学習して行く中で気づいたら都度修正していきたいと思います。 環境・使用ツール 言語 Python OS Ubuntu(Linuxのシステムコー

                                Webサーバの仕組みについて入門してみた(Python実装) - iimon TECH BLOG
                              • FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ|ハイクラス転職・求人情報サイト アンビ(AMBI)

                                FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ PythonのWebフレームワークとしていま注目を集めるFastAPIは、シンプルにコードが書けるだけでなく、パフォーマンスが高いWebアプリケーションのバックエンドサーバーが構築可能です。同フレームワークの勘所をPythonスペシャリストの杜世橋さんが、初心者向けのハンズオン、そしてより実践的な画像への自動タグ付けサービス実装をとおして解説します。 FastAPIはいま非常に注目されているPythonのWebフレームワークの1つです。Flaskのようにシンプルに書ける一方でPythonのType Hintの機能をうまく活用し、HTTPのリクエスト/レスポンスをPythonの関数の引数/戻り値とシームレスにマッピングして非常に効率的に開発ができるのが最大の特徴です。非同期処理にも対応していてその名

                                  FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ|ハイクラス転職・求人情報サイト アンビ(AMBI)
                                • プロと読み解く Ruby 3.0 NEWS - クックパッド開発者ブログ

                                  技術部の笹田(ko1)と遠藤(mame)です。クックパッドで Ruby (MRI: Matz Ruby Implementation、いわゆる ruby コマンド) の開発をしています。お金をもらって Ruby を開発しているのでプロの Ruby コミッタです。 本日 12/25 に、ついに Ruby 3.0.0 がリリースされました。一昨年、昨年に続き、今年も Ruby 3.0 の NEWS.md ファイルの解説をします。NEWS ファイルとは何か、は一昨年の記事を見てください(なお Ruby 3.0.0 から、NEWS.md にファイル名を変えました)。 プロと読み解く Ruby 2.6 NEWS ファイル - クックパッド開発者ブログ プロと読み解くRuby 2.7 NEWS - クックパッド開発者ブログ Ruby 3.0 は、Ruby にとってほぼ 8 年ぶりのメジャーバージョンア

                                    プロと読み解く Ruby 3.0 NEWS - クックパッド開発者ブログ
                                  • AWS 無料利用枠の概念が大きく変わりました - サーバーワークスエンジニアブログ

                                    みなさん、こんにちは。AWS CLI が好きな AWS サポート課の市野です。 昨日、新しい Payer アカウントを作成しようとしていて急に挙動が変わっていることに気づきましたので、少し調べてみました。 変わった挙動 AWS Organizations や AWS Control Tower からのアカウント発行をせず、スタンドアロンのアカウントを発行するプロセスの中で、無料プラン(Free plan)か有料プラン(Paid plan)のどちらを利用するかの選択肢が表示されるようになっています。 新しく挿入されるようになったプロセス AWS Free Tier について AWS 公式ページ Explore AWS services with AWS Free Tier - AWS Billing docs.aws.amazon.com それぞれのプランの比較 Choosing an AW

                                      AWS 無料利用枠の概念が大きく変わりました - サーバーワークスエンジニアブログ
                                    • コーディングエージェントの能力を拡張する Serena を試してみた

                                      LSP を活用してセマンティックなコード検索・編集能力を提供する MCP サーバー Serena の導入・使用方法を紹介。Claude Code でのオンボーディングからリファクタリングまでの実践的な活用例を解説します。 Serena はセマンティックなコード検索・編集能力を追加するオープンソースのツールキットです。MCP(Model Context Protocol) サーバーとして動作しているため、Claude Code や Cursor, VS Code のように MCP に対応しているクライアントであれば利用できます。またエージェントフレームワークとして Agno を使用しているため、特定の LLM モデルに依存せずに動作します。 Serena は LSP(Language Server Protocol)を使用してセマンティックなコードを解析するのが特徴です。LSP はコードの構

                                        コーディングエージェントの能力を拡張する Serena を試してみた
                                      • LangChainを使わない - ABEJA Tech Blog

                                        TL; DR LangChainのメリデメを整理する過程で、今となってはopenai-pythonのうちChatGPTのAPIをを簡単に取り回せる程度のシンプルなライブラリがあるだけでも十分便利なんじゃないかと思ったので、ライブラリを個人で作ってみました。(バージョン0.0.1なのでちょっとお粗末な所もありますが) github.com はじめに こんにちは、データサイエンティストの坂元です。ABEJAアドベントカレンダーの13日目の記事です。世は大LLM時代ということで、ありがたいことにABEJAでも複数のLLMプロジェクトを推進させて頂いています。私自身もいくつかのLLMプロジェクトに参画しています。LLMといえばLangChainが便利ですね。OpenAI APIの利用だけでなく、各種ドキュメントのパースが出来たり、HuggingFaceやインデックスDBを扱う他のライブラリとインテ

                                          LangChainを使わない - ABEJA Tech Blog
                                        • Python×株式投資:都度DLはやめた─yfinanceで爆速テクニカル分析を回したい - Qiita

                                          yfinaceデータを用いた軽量データセット(個人用)の構築 はじめに これまでテクニカルスクリーニングのバックテストを行う中で、 処理速度の遅さに課題を感じていました。 特に、複数銘柄に対してループ処理を行う際、 毎回 yfinance を通じて株価データを取得していたため、 同じ銘柄でも都度ダウンロードが発生し、非効率でした。 →今のスクリーニング系の問題について書いたのがこちらの記事です。よければ参考に。 例えば以下のようなコードが問題でした。 # ----------------------------- # スクリーニング条件別ループ # ----------------------------- summary = [] for cond in screening_conditions: result = [] chart_dir = お好きなディレクトリ os.makedir

                                            Python×株式投資:都度DLはやめた─yfinanceで爆速テクニカル分析を回したい - Qiita
                                          • 2024年のPythonプログラミング - Uzabase for Engineers

                                            ソーシャル経済メディア「NewsPicks」で推薦や検索などのアルゴリズム開発をしている北内です。Pythonは頻繁に新機能や便利なライブラリが登場し、ベストプラクティスの変化が激しい言語です。そこで、2024年2月時点で利用頻度の高そうな新機能、ライブラリ、ツールなどを紹介したいと思います。 この記事では広く浅く紹介することに重点を置き、各トピックについては概要のみを紹介します。詳細な使用方法に関しては各公式サイト等での確認をおすすめします。なお、本記事ではOSとしてmacOSを前提としています。 環境構築 Pythonの環境構築はpyenvとPoetryの組み合わせがもっとも標準的でしょう。 以下の手順でpyenvとPythonをインストールできます。 brew install pyenv # Bashの場合 echo 'eval "$(pyenv init -)"' >> ~/.ba

                                              2024年のPythonプログラミング - Uzabase for Engineers
                                            • LLMフレームワークのセキュリティリスク - LangChain, Haystack, LlamaIndex等の脆弱性事例に学ぶ - GMO Flatt Security Blog

                                              はじめに こんにちは。GMO Flatt Security株式会社セキュリティエンジニアの森(@ei01241)です。 近年、大規模言語モデル(LLM)の進化により、チャットボット、データ分析・要約、自律型エージェントなど、多岐にわたるAIアプリケーション開発が進んでいます。LangChainやLlamaIndexのようなLLMフレームワークは、LLM連携や外部データ接続などを抽象化し開発効率を向上させる一方、その利便性の背後には新たなセキュリティリスクも存在します。 本稿では、LLMフレームワークを利用・開発する際に発生しやすい脆弱性を具体的なCVEを交えて解説し、それぞれ脆弱性から教訓を学びます。そして、それらの教訓から開発者が知っておくべき対策案についても紹介します。 また、GMO Flatt SecurityはLLMを活用したアプリケーションに対する脆弱性診断・ペネトレーションテス

                                                LLMフレームワークのセキュリティリスク - LangChain, Haystack, LlamaIndex等の脆弱性事例に学ぶ - GMO Flatt Security Blog
                                              • 「だんご屋のひまつぶし」完全解析 - すぎゃーんメモ

                                                「だんご屋のひまつぶし」とは 最長手順の問題は…? 組み合わせ、グラフ問題 プログラムで解く 状態の列挙 グラフの構築 最短経路問題を解く WASM化して、ブラウザ上で解く もしもすべて異なる団子だったら さらに一般化していくと 到達可能性 頂点数 本数を固定し、高さを変える 高さを固定し、本数を変える まとめ Repository 「だんご屋のひまつぶし」とは 「ハノイの塔」の派生型のようなパズル。 高さ3の串が3本あり、3色の団子2個ずつ計6個が刺さっている。これらを1個ずつ移し替えて、ある状態からある状態へと遷移させる、というゲーム。 移動できるのは各串で一番上にある団子だけ。 団子の大きさのような概念はなく、高さ3以内であればどこにでも動かせる。 単純なルールだがなかなかに奥が深く、じっくり考えて動かさないと最適な手順で達成するのは意外に難しい。 パズルオーディションというもので最

                                                  「だんご屋のひまつぶし」完全解析 - すぎゃーんメモ
                                                • Building a toy browser

                                                  In the last several weeks, I have been building a toy browser based on an online book, Web Browser Engineering. As someone who spent a fair share of his career on web frontend, it was eye-opening and satisfying. It felt like I had been living on one side of a wall for years and finally visited the other side of the wall. I imagine other web frontend folks would like it as well. The book Web Browse

                                                    Building a toy browser
                                                  • Why, after 6 years, I’m over GraphQL

                                                    GraphQL is an incredible piece of technology that has captured a lot of mindshare since I first started slinging it in production in 2018. You won’t have to look far back on this (rather inactive) blog to see I have previously championed this technology. After building many a React SPA on top of a hodge podge of untyped JSON REST APIs, I found GraphQL a breath of fresh air. I was truly a GraphQL h

                                                    • MCP(Model Context Protocol)を活用したJグランツ補助金検索システムの実装例|デジタル庁

                                                      デジタル庁プロダクトマネージャーユニットの土岐竜一です。事業者の手続システム総括班で、Jグランツを含む事業者向けシステムなどを担当しています。 この記事では、デジタル庁が運用する補助金電子申請システム「Jグランツ」のAPIを、Anthropic社が提唱するModel Context Protocol(MCP) によりラッピングし、LLMから利用可能なシステムのサンプル設計および実装について説明します。 具体的には、Pythonで簡単に実装できるFastMCPフレームワークを利用し、Jグランツの補助金検索や詳細の取得などの実用的な機能を備えたMCPサーバーを例として実装します。なお、本記事におけるコードはGitHubよりダウンロード可能です。 本実装例で実現できること今回紹介するMCPサーバーを利用すると、LLM(Claudeなど)を通じて、以下のような自然言語によるJグランツの補助金検索や

                                                        MCP(Model Context Protocol)を活用したJグランツ補助金検索システムの実装例|デジタル庁
                                                      • WebAssemblyで、JITコンパイラに迫る高速なJavaScriptエンジンを実装へ。Bytecode Allianceが技術解説。JavaScript以外の言語でも

                                                        WebAssemblyで、JITコンパイラに迫る高速なJavaScriptエンジンを実装へ。Bytecode Allianceが技術解説。JavaScript以外の言語でも 「Bytecode Alliance」は、WebAssemblyをWebブラウザだけでなく、デスクトップPCやサーバ、IoTデバイスなどあらゆる環境で、セキュアに実行することを目指している団体です。 Fastly、Mozilla、Arm、Google、マイクロソフト、インテルをはじめとする企業や団体が名前を連ねています。 参考:WebAssemblyをあらゆるプラットフォームでセキュアに実行できるようにする「Bytecode Alliance」発足。インテル、Mozilla、Red Hatなど 同団体は「WASI」と呼ばれる、どのOSやホストシステムでWebAssemblyモジュールが実行されたとしても、安全かつ透過的

                                                          WebAssemblyで、JITコンパイラに迫る高速なJavaScriptエンジンを実装へ。Bytecode Allianceが技術解説。JavaScript以外の言語でも
                                                        • 俺が考える最強の「麻雀点数申告練習アプリケーション」を作ってみる ~ Pythonによる麻雀点数計算問題の自動生成と音声による点数申告 ~ - エムスリーテックブログ

                                                          こちらはエムスリー Advent Calendar 2023 1日目の記事です。 Overview エムスリーエンジニアリンググループ AI・機械学習チームでソフトウェアエンジニアをしている中村(po3rin) です。趣味は麻雀でフリー雀荘で毎年200半荘以上打ちます。好きな麻雀プロは園田賢さんです。 麻雀を始めるときに一番の障壁になるのは点数計算ではないでしょうか? 特に符計算が初心者の関門のようです。一方私のような初中級者でも突然のレアな点数申告にまごつくことがあります。 そこで、今回はその人に合った麻雀の点数計算問題(主に符計算が焦点となる問題)を生成して、自分で点数計算&点数申告の練習をする方法を探求したのでその紹介をします。麻雀用語が少しだけ登場するので、対象読者は麻雀を少しでもかじったことのあるエンジニアの方です。 Overview 麻雀の点数計算の難しさ 現状の点数計算の練習

                                                            俺が考える最強の「麻雀点数申告練習アプリケーション」を作ってみる ~ Pythonによる麻雀点数計算問題の自動生成と音声による点数申告 ~ - エムスリーテックブログ
                                                          • Python普及しろ協会に入会したい

                                                            この記事はタナイ氏によるPython滅ぼす協会に入会したいを読んでから執筆したものです。 この記事の趣旨はPython滅ぼす協会に入会したいに対する反論という形をとりながら、タナイ氏により「バカの言語」と揶揄され、「使ってエンジニアを名乗るというのは」「滑稽」とまで言われたPythonの立場を再考することです。 追記 本記事は「Pythonはこれだけ優れた言語だからみんな使おう!」というものではなく「言うほど酷くないと思うよ」程度のものです。 型アノテーションがあるからと言って静的型付けを軽視しているわけでもなければ、map関数をもってmapメソッドを不要だと言っているわけでもありません。 この記法は嫌い〜この記法が好き〜と表明することは個人の自由ですが、同様に「この記法は実はこういう意味があって〜」という意見があればそれを聞いた上で、物事を判断して欲しいです。もちろん、聞いても意見が変わ

                                                              Python普及しろ協会に入会したい
                                                            • DB設計レビューの負荷を7割削減 ── Slack × Bedrockで実現した自動化の仕組み - ZOZO TECH BLOG

                                                              はじめに こんにちは、SRE部カート決済SREブロックの伊藤(@_itito_)です。普段はZOZOTOWNのカート決済機能のリプレイス・運用・保守に携わっています。また、データベース(以下DB)領域でのテックリードを担っており、DBREとしてDB周りの運用・保守・構築に関わっています。 弊社のDBRE活動については、以前次の記事で紹介しました。 techblog.zozo.com この活動の中で、DBのテーブル定義の設計レビューを行っています。この運用にAWSのBedrockを用いて自動化を組み込んだ取り組みを紹介します。 目次 はじめに 目次 背景・課題 DB設計レビューの課題 レビュー工数と「トイル化」の問題 開発者によるガイドライン遵守度のばらつき DBレビューフローの変更方針 自動レビューBotの設計・実装 技術選定 作成するレビューシステムとSlackとの連携 Confluen

                                                                DB設計レビューの負荷を7割削減 ── Slack × Bedrockで実現した自動化の仕組み - ZOZO TECH BLOG
                                                              • TabFS

                                                                Going through the files inside a tab's folder. For example, the url.txt, text.txt, and title.txt files tell me those live properties of this tab (Read more up-to-date documentation for all of TabFS's files here.) This gives you a ton of power, because now you can apply all the existing tools on your computer that already know how to deal with files -- terminal commands, scripting languages, point-

                                                                  TabFS
                                                                • Python Web UIフレームワークで作るデスクトップアプリ | gihyo.jp

                                                                  寺田 学(@terapyon)です。2024年4月の「Python Monthly Topics」は、Python Web UIフレームワークの1つであるStreamlitを使ってWindowsやmacOSのデスクトップアプリを作る方法を解説します。 目的⁠・モチベーション Pythonで自動化のスクリプトを作ったり、JupyterLabやColaboratoryでデータの可視化を行うことがあります。これらを作成者以外の多くの方に利用してもらう方法として、Webシステムやデスクトップアプリとして提供する方法が考えられます。 Webシステムの構築やデスクトップアプリの作成となると、技術的なハードルがあります。他には、時間的なコストに見合わないという状況もあり得ます。 Python Web UIフレームワークを使うことで、比較的少ないコードでWeb UIからスクリプトの実行や可視化をするアプリ

                                                                    Python Web UIフレームワークで作るデスクトップアプリ | gihyo.jp
                                                                  • 大実験!ChatGPTは競プロの問題を解けるのか (2024年5月版) - E869120's Blog

                                                                    1. はじめに 2024 年 5 月 14 日、OpenAI 社から新たな生成 AI「GPT-4o」が発表され、世界に大きな衝撃を与えました。これまでの GPT-4 よりも性能を向上させただけでなく1、音声や画像のリアルタイム処理も実現し、さらに応答速度が大幅に速くなりました。「ついにシンギュラリティが来てしまったか」「まるで SF の世界を生きているような感覚だ」という感想も見受けられました。 しかし、いくら生成 AI とはいえ、競技プログラミングの問題を解くのは非常に難しいです。なぜなら競技プログラミングでは、問題文を理解する能力、プログラムを実装する能力だけでなく、より速く答えを求められる解法 (アルゴリズム) を考える能力も要求されるからです。もし ChatGPT が競技プログラミングを出来るようになれば他のあらゆるタスクをこなせるだろう、と考える人もいます。 それでは、現代最強の

                                                                      大実験!ChatGPTは競プロの問題を解けるのか (2024年5月版) - E869120's Blog
                                                                    • Chromium にコントリビュートするための周辺知識 | blog.jxck.io

                                                                      Intro Chromium にコントリビュートするためには、ソースコードを理解する以外にも、もろもろ必要な周辺知識がある。 ドキュメントはかなり整備されている方ではあるが、そのドキュメントにたどり着くのが難しい場合もある。 レビュアーなどが親切に教えてくれるものをローカルにメモしているが、それも散らばってきたため、ここにまとめることにする。 まずは初期状態で公開するが、どんどん更新していき、長くなっても分割しないで追記を繰り返そうと考えている。 関連サイト 始めて取り組もうとすると、まずどこを見ればわからないところから始まる。 似たようないくつかのサイトがあり、使い分けがされているからだ。 code search https://source.chromium.org/chromium/chromium/src コードをインタラクティブに検索するためのサイト Workspace 風の U

                                                                        Chromium にコントリビュートするための周辺知識 | blog.jxck.io
                                                                      • Writing Python like it’s Rust

                                                                        You can check out a YouTube recording of a talk based on this blog post. I started programming in Rust several years ago, and it has gradually changed the way I design programs in other programming languages, most notably in Python. Before I started using Rust, I was usually writing Python code in a very dynamic and type-loose way, without type hints, passing and returning dictionaries everywhere,

                                                                        • git-sim: Visually simulate Git operations in your own repos

                                                                          Table of Contents Introduction When --dry-runs aren't enough What is Git-Sim? Git-Sim Goals What Does Git Sim Do? Full list of Git-Sim supported commands Git-Sim features How to Install and Run Git-Sim How Does Git-Sim Work? Contributing to Git-Sim Summary Next Steps Introduction Despite its simple design under the hood, Git is a notoriously confusing tool for new devs to learn to use and understa

                                                                            git-sim: Visually simulate Git operations in your own repos
                                                                          • Python最新バージョン対応!より良い型ヒントの書き方 | gihyo.jp

                                                                            寺田 学です。9月の「Python Monthly Topics」は、Python 3.5で導入され、多くの場面で活用されている型ヒント(Type Hints)について、より良い型ヒントの書き方を紹介します。 Pythonの型ヒントとは Pythonは動的型付け言語です。型を指定せずに変数宣言できますし、関数の引数や戻り値に型を宣言する必要はありません。 Python 3.5(2015年9月リリース)で型ヒントの仕組みが入りました。型の指定が不要なPythonですが、型ヒントを付けることで、「⁠コードの可読性向上⁠」⁠、「⁠IDEコード補完の充実⁠」⁠、「⁠静的型チェックの実行」といった静的型付け言語のようなメリットを得ることができます。 Pythonの型ヒントは以下のように記述します。 name: str = "氏名" # 変数nameをstr型と宣言 def f(arg: int) -

                                                                              Python最新バージョン対応!より良い型ヒントの書き方 | gihyo.jp
                                                                            • プロと読み解く Ruby 3.1 NEWS - クックパッド開発者ブログ

                                                                              技術部の笹田(ko1)と遠藤(mame)です。クックパッドで Ruby (MRI: Matz Ruby Implementation、いわゆる ruby コマンド) の開発をしています。お金をもらって Ruby を開発しているのでプロの Ruby コミッタです。 本日 12/25 に、ついに Ruby 3.1.0 がリリースされました(Ruby 3.1.0 リリース )。今年も Ruby 3.1 の NEWS.md ファイルの解説をします。NEWS ファイルとは何か、は以前の記事を見てください。 プロと読み解く Ruby 2.6 NEWS ファイル - クックパッド開発者ブログ プロと読み解くRuby 2.7 NEWS - クックパッド開発者ブログ プロと読み解くRuby 3.0 NEWS - クックパッド開発者ブログ 本記事は新機能を解説することもさることながら、変更が入った背景や苦労な

                                                                                プロと読み解く Ruby 3.1 NEWS - クックパッド開発者ブログ
                                                                              • MCP ツールのコンテキスト圧迫の問題とその解決策

                                                                                MCP の普及に伴い、多数のツール定義が LLM のコンテキストを圧迫する課題が浮上しています。本記事では Progressive disclosure(段階的開示)による最小限の情報提供、MCP を使ったコード実行によるツール呼び出しの効率化、単一の検索ツールによるコンテキスト削減など、実践的な解決策を Claude Skills や Cloudflare Code Mode の事例とともに解説します。 Model Context Protocol (MCP) は登場からおよそ 1 年が経過し、事実的な標準としての地位を確立しつつあります。MCP が普及するにつれて、MCP ツールの課題点も浮き彫りになってきました。その課題の 1 つが、1 つのタスクを達成するために多くのツールが読み込まれ、結果として多くのコンテキストが消費されてしまうという問題です。 前提として、LLM がタスクの達

                                                                                  MCP ツールのコンテキスト圧迫の問題とその解決策
                                                                                • Pythonプロジェクトを快適にするために導入したツールとその設定 | DevelopersIO

                                                                                  start: if [ -n "${ENV}" ]; then \ .venv/bin/dotenv --file ${ENV} run -- .venv/bin/python src/main.py; \ lint: poetry run pysen run lint lint-fix: poetry run pysen run format && \ poetry run pysen run lint test-unit: poetry run pytest install-dev: poetry install install: poetry install --no-dev 本番環境のみ入れたいパッケージがある場合 IoT開発等では、開発時はMacで本番はラズパイみたいなケースの場合、アーキテクチャ依存で追加できないパッケージがあったりします。 例えばRPi.GPIOは、GPIOが

                                                                                    Pythonプロジェクトを快適にするために導入したツールとその設定 | DevelopersIO