並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 390件

新着順 人気順

python index get valueの検索結果1 - 40 件 / 390件

  • 君たちはCursorを本当に使えているか

    2025/03/27追記 Cursor側のアップデートが1ヶ月で進んでいるので、以下追記しました。 本記事の内容を踏まえたあとに読むとよいかと思います! はじめに こんにちは。Builtoという会社で代表 & エンジニアをしている冨田です。 タスク管理をAIがサポートする「サポットさん」など、AIプロダクトを作っています! 「サポットさん」の概要はこちらから: https://lp.sapot-san.com/ 開発にもAIをフル活用しており、そこで得られた知見を共有したいと思います。 具体的には、経験3年以上の現役ソフトウェアエンジニア(生成AIのない時代からコードを書いてきた方々)をターゲットに、本番運用レベルの大規模コードベースでもCursorを活用しコーディング時間を 1/3〜1/5 に縮めている手法をお伝えします。 仕様策定やアプリの機能にもLLMをフル活用していますが、今回は実

      君たちはCursorを本当に使えているか
    • 日本株3700社以上を分析。yfinance x「わが投資術」株式スクリーニングアプリを作った話(バイブコーディング)

      いきなりですが。 海外旅行したり働き始めたりすると、日本の良さが身に染みたと感じた人は多いんじゃないでしょうか? なんかとりあえず外で働いてみたいと思っていましたが、今はいつ戻るかと考える日々です。(とにかく温泉に入りたい) また色々と各国を回る中で、日本企業ってアジア圏や他の国にもかなり進出してるんだなぁと実感しました。(そりゃそう) そんなこんなで日本株に興味を持ち 昨年にわが投資術を購入して実践し始めました。(まだ初めて一年目なので成績はわかりません。。。が、マイナスは無し) 自分でバフェットコードや Claude mcp-yfinance などを利用しながらスクリーニングしてみましたが、毎回決算が出るたびに手動とチャット相手にあるのも何かなぁ。と思いまして。 じゃあ自動収集とスクリーニング用のアプリ作ってみよう(vibe coding) そんなノリから、日本株全銘柄を自動収集・簡易

        日本株3700社以上を分析。yfinance x「わが投資術」株式スクリーニングアプリを作った話(バイブコーディング)
      • ほんで、MEGA BIGくじにいくら賭ければいいの?|morio

        この記事では、MEGA BIGくじの最適な賭け額、最適な賭け額の算出方法について説明する。 ※この記事の内容は間違っている可能性があるので注意してください。間違いがあればご指摘いただけると嬉しいです。できれば専門家にレビューしてほしいです。 ※この記事はMEGA BIGの購入を薦めているわけではありません。 MEGA BIG 祭2024/8/30、MEGA BIG祭が突如発生した。 MEGA BIGは通常期待値がマイナスであるが、台風の影響でサッカーの試合が一部中止になり第1476回のMEGA BIGの期待値が1を超える可能性があるという投稿があったのだ。 toto MEGA BIGが熱い。 対象の12試合中4試合が中止(自動的中扱い)なので、8試合分当たれば1等というレイドイベント発生。現在キャリーオーバー61億円。 公営ギャンブルとしてはありえない期待値。 なおtoto BIG/100

          ほんで、MEGA BIGくじにいくら賭ければいいの?|morio
        • (数式を使わない) Transformer の直感的な説明 / 真面目なプログラマのためのディープラーニング入門

          (数式を使わない) Transformer の直感的な説明 RNN の欠点 Transformer はこれをどう解決したか Transformer の動作原理 複数の要素間の関係を考慮する (Self-Attention、自己注意) 要素の順序を考慮する (Positional Encoding、位置エンコーディング) まとめ 概要: ChatGPT などで使われている Transformer モデルは、 ニューラルネットワークの世界にいくつかの革新的なアイデアをもたらした。 本記事では、プログラマに理解しやすい形でそれらのアイデアを解説する。 実際に使われている数学の詳細には触れない。 (技術的解説については元論文 Attention is All You Need か、 その注釈版である The Annotated Transformer を参照のこと。 日本語では この解説 がわかり

          • とほほのHaskell入門 - とほほのWWW入門

            概要 Haskellとは 関数型言語 純粋関数型言語 インストール Haskell Stack Hello world 基本 予約語 コメント ブロック レイアウト 入出力 型 変数 数値 文字(Char) 文字列(String) エスケープシーケンス リスト([...]) タプル((...)) 演算子 関数 演算子定義 再帰関数 ラムダ式 パターンマッチ ガード条件 関数合成(.) 引数補足(@) 制御構文 do文 let文 if文 case文 where文 import文 ループ データ型 データ型(列挙型) データ型(タプル型) データ型(直和型) 新型定義 (newtype) 型シノニム (type) 型クラス (class) メイビー(Maybe) ファンクタ(Functor) アプリケイティブ(Applicative) モナド(Monad) モジュール (module) 高階関

            • Software Design連載 2021年8月号 Python製のレガシー&大規模システムをどうリファクタリングするか - MonotaRO Tech Blog

              Software Design連載開始 ※ (2021/09/02 08:55) 「Pythonを用いて開発を始めたのが2003年」を「Pythonを用いて開発を始めたのが2002年」に修正 こんにちは。金谷です。 このたび、モノタロウにおけるPython大規模開発に関する取り組みを、技術評論社様で発刊されている Software Design に連載させていただくことになりました。 モノタロウがPythonを用いて開発を始めたのが2002年。2021年の現在もPythonを用いた開発が続けられています。 事業の成長に伴い、関連するシステムやエンジニアの数も増え続けていくなかで、いかに安定的に価値を提供し続けられるのか。 モノタロウにおける取り組みを、開発や運用周りを通してご紹介していきます。 本記事の初出は、 Software Design2021年8月号「Pythonモダン化計画(第1

                Software Design連載 2021年8月号 Python製のレガシー&大規模システムをどうリファクタリングするか - MonotaRO Tech Blog
              • 関数名、メソッド名、変数名でよく使う英単語のまとめ

                プログラミングをしていると関数名、メソッド名、変数名をどうするか悩みます。 ロジックより命名に時間を費やすこともざらにあります。翻訳したり、一般的な命名規則なのかいつも検索して大変です。 よく使うサイトの内容をコピってメモしておく 関数名とメソッド名の違いについて よく使う英単語のまえに、いつもごっちゃにして使っているけど、定義はこんな感じ 「関数」と「メソッド」の違い 似ているところ どちらも何か(引数)を入れると処理をして何か(戻り値)を返してくれます。 違うところ やってること自体は大差ありません。概念としては違います。 メソッドはオブジェクト指向で登場する用語で、オブジェクトの動作を定義したものです。 まずオブジェクトありきなのですね。一方の関数は、オブジェクト云々は関係ありません。 個人的な使い分け Java で登場する関数は「メソッド」です。C 言語で登場する関数は「関数」と呼

                  関数名、メソッド名、変数名でよく使う英単語のまとめ
                • Reactを使うならReact Developer Toolsの再レンダリング時ハイライトくらい設定してくれ

                  最近 React と Next.js に入門したのですが、入門時点で一番最初に知っておきたかったことについて書きました。 「React 初心者が useState とかを学習する前にまず一番にやることはこれ」っていう内容です。。 タイトルは自分への戒めです。 TL;DR この記事を読むと React Developer Tools の簡単な使い方を知り、useState の再レンダリングについて動きがイメージできるようになると思います React Developer Tools これのこと。React を使った開発をするのであれば、必ず導入しないといけないレベルのもの。 再レンダリング時ハイライトの設定 React Developer Tools をインストールした後、F12 を押下して Component を選択この歯車を押下する。 すると、以下のような部分があると思うのでチェック ON

                    Reactを使うならReact Developer Toolsの再レンダリング時ハイライトくらい設定してくれ
                  • 【感想】『Amazon Web Servicesを使ったサーバーレスアプリケーション開発ガイド』:Lambdaで本格サービス開発まで - Rのつく財団入り口

                    サーバーレスアプリケーション開発ガイド Lambda関数を用いたサーバーレス開発をもっと知っておこうと思って読んだ本の感想です。2018年4月刊行、サーバーレスの主要サービス解説にコードはPython、のみならずフロントはVue.jsを使った本格開発まで、実践的な内容が詰まった本です。 作者は現Amazon Web Services Japan所属のKeisuke69こと西谷圭介さん。Twitterでもよくお見掛けします。(@Keisuke69) サーバーレスアプリケーション開発ガイド Chapter1 サーバーレスアプリケーションの概要 1-1 サーバーレスアプリケーションとは 1-2 ユースケースとアーキテクチャパターン 1-3 サーバーレスアプリケーションのライフサイクル管理 Chapter2 Amazon Web Services(AWS)利用の準備 Chapter3 インフラを自

                      【感想】『Amazon Web Servicesを使ったサーバーレスアプリケーション開発ガイド』:Lambdaで本格サービス開発まで - Rのつく財団入り口
                    • ルールは現場で死にました - The Rules of Programming の読書感想文 - じゃあ、おうちで学べる

                      本日は人生の数ある選択肢のなかから、こちらのブログを読むという行動を選んでくださいまして、まことにありがとうございます。 はじめに プログラミングの世界には多くの指針や原則が存在します。Chris Zimmerman氏の「The Rules of Programming」(邦題:ルールズ・オブ・プログラミング ―より良いコードを書くための21のルール)は、不変の知恵を凝縮した一冊です。これらの原則は、多くの開発現場で活用できる有益な内容となっていると思いました。 The Rules of Programming: How to Write Better Code (English Edition) 作者:Zimmerman, ChrisO'Reilly MediaAmazon 本書は、大ヒットゲーム『Ghost of Tsushima』などで知られるゲーム制作スタジオ、Sucker Pun

                        ルールは現場で死にました - The Rules of Programming の読書感想文 - じゃあ、おうちで学べる
                      • FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ|ハイクラス転職・求人情報サイト アンビ(AMBI)

                        FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ PythonのWebフレームワークとしていま注目を集めるFastAPIは、シンプルにコードが書けるだけでなく、パフォーマンスが高いWebアプリケーションのバックエンドサーバーが構築可能です。同フレームワークの勘所をPythonスペシャリストの杜世橋さんが、初心者向けのハンズオン、そしてより実践的な画像への自動タグ付けサービス実装をとおして解説します。 FastAPIはいま非常に注目されているPythonのWebフレームワークの1つです。Flaskのようにシンプルに書ける一方でPythonのType Hintの機能をうまく活用し、HTTPのリクエスト/レスポンスをPythonの関数の引数/戻り値とシームレスにマッピングして非常に効率的に開発ができるのが最大の特徴です。非同期処理にも対応していてその名

                          FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ|ハイクラス転職・求人情報サイト アンビ(AMBI)
                        • 特定のページが更新されたら通知する仕組みを作ってみた - Qiita

                          はじめに RSS対応のサイトだと、更新情報追いやすいけど、RSS非対応のページも追いたいよね。って人向けの記事です。 RSS対応しているサイトなら、RSSリーダーを使った方が早いです また、Discordのチャンネルにも通知がしたかったので、メールとDiscord両方に通知を行っています。 Discord側にWebhook用のURLが必要ですが、本記事では紹介しません 参考サイトのZennの記事が細かく書かれていますので、そちらをご覧ください なお、この仕組みは更新を検知したいサイトに確認リクエストを送ります。 高頻度で設定してしまうと、サーバーに負荷がかかる為、 高頻度での設定はしないようにお願いします 参考サイト 構成図 コードについて(Lambda) コードについては、基本的に、クラスメソッドさんの記事を参考にしています Discordの通知部分については、AmazonBedrock

                            特定のページが更新されたら通知する仕組みを作ってみた - Qiita
                          • LangChainを使わない - ABEJA Tech Blog

                            TL; DR LangChainのメリデメを整理する過程で、今となってはopenai-pythonのうちChatGPTのAPIをを簡単に取り回せる程度のシンプルなライブラリがあるだけでも十分便利なんじゃないかと思ったので、ライブラリを個人で作ってみました。(バージョン0.0.1なのでちょっとお粗末な所もありますが) github.com はじめに こんにちは、データサイエンティストの坂元です。ABEJAアドベントカレンダーの13日目の記事です。世は大LLM時代ということで、ありがたいことにABEJAでも複数のLLMプロジェクトを推進させて頂いています。私自身もいくつかのLLMプロジェクトに参画しています。LLMといえばLangChainが便利ですね。OpenAI APIの利用だけでなく、各種ドキュメントのパースが出来たり、HuggingFaceやインデックスDBを扱う他のライブラリとインテ

                              LangChainを使わない - ABEJA Tech Blog
                            • みんなのためのLLMアプリケーション開発環境の構築事例

                              はじめに こんにちは。Game Platform DevのDong Hun Ryoo、Takenaka、Zhang Youlu(Michael)、Hyungjung Leeです。私たちの組織は、ゲームパブリッシングに必要なさまざまな機能を開発・運用する役割を担っています。 私たちは最近、組織内の業務効率を高めるためにさまざまなLLM(large language model)アプリケーションを開発し、それと連携してLLMOpsシステムの構築プロジェクトを行いました。プロジェクトの主な目標の一つは、参入障壁が高いLLMアプリケーション開発を、職種に関係なく誰でも簡単に作成できる環境を構築することでした。そのため、さまざまなことを考えながら試行錯誤を経た結果、誰でも簡単にアクセスできる開発・デプロイ環境を整えました。 今回の記事では、LLMアプリケーションの一般的な開発方法と開発プロセスで直面

                                みんなのためのLLMアプリケーション開発環境の構築事例
                              • Why, after 6 years, I’m over GraphQL

                                GraphQL is an incredible piece of technology that has captured a lot of mindshare since I first started slinging it in production in 2018. You won’t have to look far back on this (rather inactive) blog to see I have previously championed this technology. After building many a React SPA on top of a hodge podge of untyped JSON REST APIs, I found GraphQL a breath of fresh air. I was truly a GraphQL h

                                • 防衛省サイバーコンテスト 2025 writeup - st98 の日記帳 - コピー

                                  2/2に12時間というちょうどよい競技時間で開催された。21時終了だったけれども、11時45分ぐらいに最速で全完して1位🎉 第1回以来4年ぶりの優勝だ。昨年大会の第4回ではヒントの閲覧数で優勝を逃してしまって悔しい思いをしたので、雪辱を果たすことができ嬉しい。開始直後からずっと1位を独走できており、450名以上のプレイヤーがいる中で圧勝だったのも嬉しい。 昨年度や一昨年度はバルクが作問を担当していたが、今回はAGESTが担当していた。これまでの問題と比較すると全体的に易化したように思うが、解くにあたって発想の大きな飛躍を必要とするいわゆる「エスパー要素」のある問題はごく一部を除いて存在しておらず*1、よかったと思う。また、昨年度・一昨年度に引き続きwriteupは公開可能というのもよかった。 戦略というほどの戦略は立てていなかったけれども、とりあえずWebを見た後は全カテゴリを上から見て

                                    防衛省サイバーコンテスト 2025 writeup - st98 の日記帳 - コピー
                                  • “Tao of Node - Design, Architecture & Best Practices” 日本語翻訳

                                    私が働いているAniqueという会社では、1年前に全てのソフトウェアでTypescriptを採用することにしました。私たちが開発している進撃の巨人のNFTサービス “Attack on Titan: Legacy” でも採用しています。 TypescriptではNestJSという素晴らしいAPIフレームワークを利用することができ、生産性高く開発を続けることができます。また、私たちはフロントエンドでNext.jsを利用しています。言語レベルでのコンテキストスイッチを抑えることで、一人のエンジニアがフロントエンドとバックエンドのどちらもの機能を開発する環境が作れました。 しかし、Nodeならではの作法や設計について、Web上にはたくさんの情報があるものの、あまりにも情報が多すぎて、まとまったプラクティスになかなか出会うことができませんでした。そのため、最初はチーム内での共通認識を作るのに苦労し

                                      “Tao of Node - Design, Architecture & Best Practices” 日本語翻訳
                                    • OpenAIのBatch APIを使ってお得にプロンプトを一括処理してみる - Taste of Tech Topics

                                      はじめに こんにちは。データサイエンスチームYAMALEXのSsk1029Takashiです。 最近はOpenAIに日本支社が出来て、日本語対応が加速するというニュースにわくわくしています。 今回はそんなOpenAIから発表されたBatch APIという機能が便利、かつお得な機能だったのでどのように使えるのか試してみます。 Introducing the Batch API: save costs and get higher rate limits on async tasks (such as summarization, translation, and image classification). Just upload a file of bulk requests, receive results within 24 hours, and get 50% off API pri

                                        OpenAIのBatch APIを使ってお得にプロンプトを一括処理してみる - Taste of Tech Topics
                                      • Rustで実装するmalloc - NTT docomo Business Engineers' Blog

                                        この記事は、NTT Communications Advent Calendar 2021 21日目の記事です。 はじめに こんにちは、イノベーションセンターの鈴ヶ嶺(@suzu_3_14159265)です。普段は、クラウド・ハイブリッドクラウド・エッジデバイスなどを利用したAI/MLシステムに関する業務に従事しています。本日は、Rustで動的メモリ確保(dynamic memory allocation)のmallocを実装してPythonやvimを動かしてみようという内容をお届けします。 また、去年もRustネタのアドベントカレンダーを書いているのでぜひ見ていただけると嬉しいです! NTTコミュニケーションズ Advent Calendar 2020 Rustで実装するNetflow Collector 実装するmallocのアルゴリズム 今回実装するmallocのアルゴリズムは小さな

                                          Rustで実装するmalloc - NTT docomo Business Engineers' Blog
                                        • 25年総裁選の小泉陣営のやらせコメントとそれ以外のコメントを深掘りしてみた|破綻国家研究所

                                          目次 はじめにこんばんは。 最近大好きなうまかっちゃんで胃もたれしてしまう破綻国家研究所です。 さて、2025年の自民党総裁選では、小泉陣営がネット上にやらせコメを仕込んだとされるメールを週刊文春がすっぱ抜き、毎日新聞が24の例文を公表しました。 実際にニコニコ生放送の中継にも、支持を盛り上げるようなコメントがちょこちょこ見受けられ、一部では「世論操作ではないか」との指摘も見られました。 まあ昔からこういうのはあるんでしょうね。知らんけど。 ただ、実際の放送コメントを覗いてみると、小泉陣営以外を支持する声や、冷静に論評するコメントも数多く確認できます。 果たして「やらせコメント」がどの程度の存在感を持っていたのか、そしてその他の自然発生的なコメントと比べてどのような特徴があったのでしょうか。 本稿では、ニコニコ生放送で流れたコメントを Niconama Comment Viewer (NC

                                            25年総裁選の小泉陣営のやらせコメントとそれ以外のコメントを深掘りしてみた|破綻国家研究所
                                          • Why UUIDs won't protect your secrets

                                            This post is part of a collection on UUIDs. What is IDOR? Indirect Object Reference (IDOR) occurs when a resource can be accessed directly by its ID even when the user does not have proper authorization to access it. IDOR is a common mistake when using a separate service for storing files, such as a publicly readable Amazon S3 bucket. The web application may perform access control checks correctly

                                            • 次世代のワークフロー管理ツールPrefectでMLワークフローを構築する CyberAgent Developers Blog | サイバーエージェント デベロッパーズブログ

                                              ※ DynalystではAWSを全面的に採用しているため、AirflowもManaged版を調査しています。 導入後の状態 Prefect導入後は、以下の構成となりました。 ポイントは以下の点です。 ワークフローをDocker Image化することで、開発・本番環境の差を軽減 staging・productionはECS Taskとしてワークフローを実行、開発ではローカルPC上でコンテナ実行 ML基盤のGitHubレポジトリへのマージで、最新ワークフローが管理画面であるPrefect Cloudへデプロイ 従来のyamlベースのdigdagから、DSに馴染み深いPythonベースのPrefectに移行したことで、コード量が減り開発負荷が軽減しました。 Prefect 入門 ~ 基礎 ~ 注意: 本記事ではPrefect 1系を扱います。Prefect 2系が2022年7月にリリースされてい

                                                次世代のワークフロー管理ツールPrefectでMLワークフローを構築する CyberAgent Developers Blog | サイバーエージェント デベロッパーズブログ
                                              • REST API Design Best Practices Handbook – How to Build a REST API with JavaScript, Node.js, and Express.js

                                                By Jean-Marc Möckel I've created and consumed many API's over the past few years. During that time, I've come across good and bad practices and have experienced nasty situations when consuming and building API's. But there also have been great moments. There are helpful articles online which present many best practices, but many of them lack some practicality in my opinion. Knowing the theory with

                                                  REST API Design Best Practices Handbook – How to Build a REST API with JavaScript, Node.js, and Express.js
                                                • SaaS におけるテナントリソースへのリクエストルーティングを JWT を用いて実現する | Amazon Web Services

                                                  Amazon Web Services ブログ SaaS におけるテナントリソースへのリクエストルーティングを JWT を用いて実現する みなさんこんにちは。ソリューションアーキテクトの福本です。 本投稿のテーマは Software as a Service(SaaS)におけるルーティングです。 SaaS ではテナントごとにサーバーなどのリソースが分離されていることがあります。そのため、各テナントに属するユーザーからのリクエストを適切なリソースへとルーティングする必要があります。 具体的なルーティングの話に入る前に、SaaS のテナント分離モデルについて説明をします。SaaS では、テナントの分離モデルとしてサイロ、プール、ブリッジモデルが存在します。また、ユーザーがサブスクライブしている利用プラン (ティア) によって、リソースの分離形態が変わるような、階層ベースの分離もあります。 サイ

                                                    SaaS におけるテナントリソースへのリクエストルーティングを JWT を用いて実現する | Amazon Web Services
                                                  • The Prompt Engineering Playbook for Programmers

                                                    Developers are increasingly relying on AI coding assistants to accelerate our daily workflows. These tools can autocomplete functions, suggest bug fixes, and even generate entire modules or MVPs. Yet, as many of us have learned, the quality of the AI’s output depends largely on the quality of the prompt you provide. In other words, prompt engineering has become an essential skill. A poorly phrased

                                                      The Prompt Engineering Playbook for Programmers
                                                    • GitHub - modelcontextprotocol/servers: Model Context Protocol Servers

                                                      Official integrations are maintained by companies building production ready MCP servers for their platforms. 21st.dev Magic - Create crafted UI components inspired by the best 21st.dev design engineers. ActionKit by Paragon - Connect to 130+ SaaS integrations (e.g. Slack, Salesforce, Gmail) with Paragon’s ActionKit API. Adfin - The only platform you need to get paid - all payments in one place, in

                                                        GitHub - modelcontextprotocol/servers: Model Context Protocol Servers
                                                      • 10X のコスパ重視 MLOps - 10X Product Blog

                                                        どうも @metalunk です. コスパ,大事ですよね?コストをある値以下に抑えたとき,どれだけパフォーマンスを発揮できるか,という話です. 10X で最初の機械学習プロダクトを作るにあたり,コスパを意識して MLOps 基盤を作ったので,それの紹介をします. Stailer における ML の重要性 レジ前推薦 作りたかったもの アーキテクチャ Training pipeline の選択 Python function-based component vs Own container component Serving 用データストア CI (Continuous Integration) CD (Continuous Delivery) Monitoring リポジトリ構成 認証 Vertex ML Metadata stailer-suggest-batch の移行 組織の話 未来

                                                          10X のコスパ重視 MLOps - 10X Product Blog
                                                        • 素人でも1ヶ月 Causal Impact で遊んだら、統計的有意差が見えるようになった話 - ブログ - 株式会社JADE

                                                          こんにちは。2024年5月にJADEに入社した江越です。 前職でデータ加工を生業としていた関係で、現在はデータ分析に関わるサポートをメインに取り組んでいます。……とはいえ、法学部出身ということもあり、統計やデータ分析に関しては「素人に毛が生えた程度」の知識しかありません。 今回は、そんな統計素人の私が Causal Impact という分析パッケージに1ヶ月間触れてみた結果、施策の効果を統計的かつ定量的に説明できる手段が得られた経験をシェアしたいと思います。 【もくじ】 Causal Impactとの出会い 効果検証について持っていた課題感 Causal Impact を知る前の効果検証手段 上記の説明の何が問題なのか? 実際に遊んでみる Causal Impactとは一体何者だ! 何をすれば良いか整理してみる inputとthroughを用意して実行してみる 統計的有意差が見える……見え

                                                            素人でも1ヶ月 Causal Impact で遊んだら、統計的有意差が見えるようになった話 - ブログ - 株式会社JADE
                                                          • GiNZAと患者表現辞書を使って患者テキストの表記ゆれを吸収した意味構造検索を試した - エムスリーテックブログ

                                                            エムスリーエンジニアリンググループ AI・機械学習チームの中村(@po3rin) です。 好きな言語はGo。仕事では主に検索周りを担当しています。 最近「医療言語処理」という本を読んで、医療用語の表記ゆれ吸収や意味構造検索などについて学びました。 医療言語処理 (自然言語処理シリーズ) 作者:荒牧 英治発売日: 2017/08/01メディア: 単行本 そこで今回はElasticsearchと患者表現辞書を使った意味構造検索がどのくらい実戦投入できるかを簡単に試したので、概要と実装方法を簡単にご紹介します。 患者テキストの表記ゆれ 患者テキストの表記ゆれとは MEDNLPの患者表現辞書 トークンによる検索の課題と対策の検討 主語が違うのにヒットしちゃう? 意味構造検索 係り受け解析と患者表現辞書を使った意味構造検索の実装 患者表現辞書を使った係り受け解析 患者表現辞書の表現をクエリに展開する

                                                              GiNZAと患者表現辞書を使って患者テキストの表記ゆれを吸収した意味構造検索を試した - エムスリーテックブログ
                                                            • MCP Python SDK のドキュメント|npaka

                                                              以下の記事が面白かったので、簡単にまとめました。 ・modelcontextprotocol/python-sdk 1. 概要「MCP」を使用すると、アプリケーションは標準化された方法でLLMにコンテキストを提供できます。これにより、コンテキストの提供とLLMとの実際のやり取りを分離できます。「Python SDK」はMCP仕様を完全に実装しており、以下のことが容易になります。 ・任意のMCPサーバに接続できるMCPクライアントの構築 ・リソース、プロンプト、ツールを公開するMCPサーバの作成 ・stdio、SSE、Streamable HTTPなどの標準トランスポートの使用 ・すべてのMCPプロトコルメッセージとライフサイクルイベントの処理 2. インストール2-1. PythonプロジェクトにMCPを追加Pythonプロジェクトの管理には「uv」が推奨されています。 (1) プロジェク

                                                                MCP Python SDK のドキュメント|npaka
                                                              • ImHex:午前3時にがんばる人のためのバイナリエディタ - setodaNote

                                                                ImHex という Hex エディタを Ubuntu 20.04 にインストールしたときのメモ書きです。 ImHex ImHex を Ubuntu 20.04 にインストールする ImHex の画面設定 動かしてみた感想 参考文献 ImHex 公式 cmake 周り 参考にしたトラブルシューティング 付録 concepts が見つけられないというエラーについて 「CMake Error at cmake/build_helpers.cmake:55」について 更新履歴 ImHex ImHex は2020年の12月に公開された比較的新しい、午前3時にがんばる人のための Hex エディタです。 *1 GitHub - WerWolv/ImHex: A Hex Editor for Reverse Engineers, Programmers and people that value thei

                                                                  ImHex:午前3時にがんばる人のためのバイナリエディタ - setodaNote
                                                                • Auth0からCognitoへのユーザー移行 - ROBOT PAYMENT TECH-BLOG

                                                                  こんにちは。ROBOT PAYMENT (以下、ロボペイ)でエンジニアをしているtakamoriです。 私が所属しているチームでは、請求先マイページ機能を開発しており、その中でユーザー認証基盤をAuth0からCognitoへと移行させました。そこで今回は、Auth0からCognitoへのユーザー移行手順を書いていきたいと思います。 ※ 本記事ではAuth0やCognitoの環境構築は対象外で、それぞれの環境が構築済み前提となります。 移行手順 Auth0からユーザーをエクスポート Auth0ユーザー情報をCognitoユーザー情報へマッピング Cognitoへユーザーをインポート Auth0からユーザーをエクスポート Auth0からのユーザーをエクスポートするには、ExportUsersJob APIを利用します。GetUsers APIを利用して取得することも可能ですが1,000件の取得

                                                                    Auth0からCognitoへのユーザー移行 - ROBOT PAYMENT TECH-BLOG
                                                                  • NETGEAR社製ルーターにおける認証不要の任意コード実行の技術的解説(PSV-2022-0044) - GMO Flatt Security Blog

                                                                    ※本記事は先立って公開された英語版記事を翻訳し、日本語圏の読者向けに一部改変したものです。 画像出典: https://www.netgear.com/business/wifi/access-points/wac124/ はじめに こんにちは、株式会社Flatt Securityのstypr(@stereotype32)です。 一昨年、日本のOSS製品で発見された0day脆弱性に関する技術解説をブログに書きました。 それ以来、私は様々な製品に多くの脆弱性を発見してきました。残念ながら私が見つけたバグのほとんどはすぐに修正されなかったので、今日まで私が見つけた、技術的に興味深い脆弱性の情報を共有する機会がありませんでした。 本記事では、NETGEAR社のWAC124(AC2000)ルーターにおいて、様々な脆弱性を発見し、いくつかの脆弱性を連鎖させて、前提条件なしに未認証ユーザーの立場からコ

                                                                      NETGEAR社製ルーターにおける認証不要の任意コード実行の技術的解説(PSV-2022-0044) - GMO Flatt Security Blog
                                                                    • GPT in 60 Lines of NumPy | Jay Mody

                                                                      January 30, 2023 In this post, we'll implement a GPT from scratch in just 60 lines of numpy. We'll then load the trained GPT-2 model weights released by OpenAI into our implementation and generate some text. Note: This post assumes familiarity with Python, NumPy, and some basic experience with neural networks. This implementation is for educational purposes, so it's missing lots of features/improv

                                                                      • yt-dlp オプション一覧及びそのメモ - †MASAYOSHI†のオンラインメモ帳

                                                                        youtube-dlの開発が止まっておりfork版のyt-dlpに移る事にした。yt-dlpはyoutube-dlのforkであるyoutube-dlcのそのまたforkになる。オリジナルであるyoutube-dlのオプション解説はyoutube-dl オプション一覧及びそのメモ。 2022/06/19更新 2022/09/06更新 OPTIONS -h, --helpヘルプを表示する。 --versionプログラムのVerを表示する。 -U, --update --no-update (default)プログラムのupdateを実行するかどうか。 -i, --ignore-errorsダウンロードエラーを無視する。プレイリストごとダウンロードするような時に使う。エラーで失敗してもダウンロードは成功したとみなされる。 --no-abort-on-error (default) --abor

                                                                          yt-dlp オプション一覧及びそのメモ - †MASAYOSHI†のオンラインメモ帳
                                                                        • Raspberry PiとAWSを利用して子どもたちのゲーム時間を可視化してみた | DevelopersIO

                                                                          DynamoDBの作成 さっそくテーブルをCDKで構築してみます。 from aws_cdk import ( Stack, RemovalPolicy, aws_dynamodb as dynamodb, # DynamoDBのライブラリをimport ) from constructs import Construct class GameCounterStack(Stack): def __init__(self, scope: Construct, construct_id: str, **kwargs) -> None: super().__init__(scope, construct_id, **kwargs) # The code that defines your stack goes here # ここから下に追記していきます。 # DynamoDB ログデータ格納用

                                                                            Raspberry PiとAWSを利用して子どもたちのゲーム時間を可視化してみた | DevelopersIO
                                                                          • 【機械学習】機械学習を用いたin silico screening【AI創薬】~第2/5章 スクレイピングによる公共データベース(PDB)からの機械学習データを収集~ - LabCode

                                                                            AI創薬とは? AI創薬は、人工知能(AI)技術を利用して新しい薬物を発見、開発するプロセスです。AIは大量のデータを高速に処理し、薬物の候補を予測したり、薬物相互作用を評価したりします。また、AIは薬物の効果や安全性をシミュレートすることも可能で、臨床試験の前の段階でリスクを評価することができます。これにより、薬物開発のコストと時間を大幅に削減することが期待されています。AI創薬は、薬物開発の新しいパラダイムとして注目を集め、製薬企業や研究機関で積極的に研究、導入が進められています。また、バイオインフォマティクス、ケモインフォマティクス、機械学習、ディープラーニングなどの技術が組み合わされ、薬物開発のプロセスを革新しています。さらに、AI創薬は個人化医療の推進にも寄与し、患者にとって最適な治療法を提供する可能性を秘めています。 今回はAI創薬の中でも、in silico screeeni

                                                                            • Writing a C compiler in 500 lines of Python

                                                                              A few months ago, I set myself the challenge of writing a C compiler in 500 lines of Python1, after writing my SDF donut post. How hard could it be? The answer was, pretty hard, even when dropping quite a few features. But it was also pretty interesting, and the result is surprisingly functional and not too hard to understand! There's too much code for me to comprehensively cover in a single blog

                                                                              • CloudFormation 一撃で EC2 の Blue/Green Deployment の CodePipeline を構築する | DevelopersIO

                                                                                準備 CodeCommitに以下をプッシュします。 なお、CodePipelineによる自動デプロイではファイル上書きデプロイを設定できないので、必要に応じて appspec.ymlで元のファイルを削除するように対応します。 ソースコード(index.html, hello.conf) appspec.yml (本稿では beforeInstall.sh を利用) ちなみに、index.html や hello.conf の素材は こちら を使っています。 参考 ## appspec.yml version: 0.0 os: linux files: - source: ./hello.conf destination: /etc/nginx/conf.d/ - source: ./index.html destination: /usr/share/nginx/html/ hooks:

                                                                                  CloudFormation 一撃で EC2 の Blue/Green Deployment の CodePipeline を構築する | DevelopersIO
                                                                                • A search engine in 80 lines of Python

                                                                                  February 05, 2024 · 9 mins · 1675 words Share on: X · HN Discussion on HackerNews. Last September I hopped on board with Wallapop as a Search Data Scientist and since then part of my work has been working with Solr, an open-source search engine based on Lucene. I’ve got the basics of how a search engine works, but I had this itch to understand it even better. So, I rolled up my sleeves and decided