運営元のロゴ Copyright © 2007-2025 All Rights Reserved by Gijutsu-Hyoron Co., Ltd. ページ内容の全部あるいは一部を無断で利用することを禁止します。個別にライセンスが設定されている記事等はそのライセンスに従います。

最近、人に本を薦める事が多くなった。とりあえずこの辺を読むといいですよ的なリストを作っておくと便利だと思ったので作ることにした。 以下、「事前知識のいらない入門本」「事前知識はいらないけど本格的な本」「事前知識がないと何言ってるかわからないけど有益な情報が満載な本」の3つにわけて列挙する。 事前知識のいらない入門本 数式少なめ、脳負荷の小さめな本をいくつか。何をやるにしてもデータ構造、アルゴリズム、数学はやっておくと幸せになれるよ。 情報検索と言語処理 データマイニングとか自然言語処理とかやりたい人にはとりあえずこれ。さすがに古い話が多くなってきたのでそろそろ新しい入門用情報検索本がでないかなあと思っている。 図解・ベイズ統計「超」入門 伝説のベイジアン先生がベイズの基礎を教えてくれる本。ベイズやりたい人はこれ。 珠玉のプログラミング データ構造とかアルゴリズムとかの考え方の基礎を教えてく
What is CodeCodex? CodeCodex is a wiki for finding and improving code. Stop reinventing the wheel. Use CodeCodex to: Browse and use pre-written code. Learn new algorithms and methods for common programming tasks. Use code in your own projects and submit new code for the community. Improve performance of code in the repository and the organization of the library. Get involved! Request code that you
2012-07-16 14:25:12 WEB+DB PRESS総集編[Vol.1~36] | 技術評論社 WEB+DB Press 総集編[Vol.1〜36]に書いた記事『Webエンジニアのための基礎,徹底理解 3章:アルゴリズム再入門 C#編』を公開します。 ちなみにこの記事ではデータ構造についての話を最小限にしています。出てくるデータ構造は配列と二分木だけ。それは、データ構造については別のライターさんが記事を書くことになっていたからです。 ちなみに、書いてみたかった(というか、書いてみたけどやめた)アルゴリズムは、 ハッシュ法 (これはデータ構造の章にあります。すばらしいです) 木の探索 (traversal) 平衡木 (AVLとか) その他の有名なソート (バブルソート、シェルソート、ヒープソート、etc) Skip List (これはどちらかと言うとデータ構造メインな話なのでため
「木構造と自然数の重複あり集合は等価だよね」というはなしをする。簡潔データ構造な人向けに言うとLOUDSの話。 とはいえこの記事は特に簡潔データ構造の知識を要求しない。データ構造とか情報量とかに興味がある人全般を対象としている。 ※簡潔勢にとっては既知な話のはずなのであえて読む必要はないです。 まず結論から述べる。以下のような幅優先で番号を振った木構造を考える。 親 → 子 (1) → (2, 3) (2) → (4) (3) → (5)この木構造は以下の重複あり集合によって表現することができる。 { 2, 4, 5, 5, 5 }これだけ書くとなんのこと?と思われるかもしれない。そこでこれから2つのことを説明する。ひとつは「何故、木構造が自然数の重複あり集合で表現できるか」、もうひとつは「重複あり集合で表現することに何の意味があるか」ということ。 何故、木構造が自然数の重複あり集合で表現
久しぶりに論文を読んだ。 http://www.dcc.uchile.cl/~gnavarro/publ.html The Wavelet Matrix Claude & Navarro; SPIRE2012 "The Wavelet Matrix"はSPIRE2012のNavarro無双のうちの一本。タイトルからするとウェーブレット木の拡張のように思える。 機能としてはウェーブレット木と同一でデータ列に対するaccess,rank,selectを提供する。しかし実装は既存手法と比べて効率的でしかも簡単になっている。 これまでにウェーブレット木の実装としてはノードをポインタでつないだ普通の木として実装する方法(Standard Wavelet Tree. 論文のAlgorithm 1)と、木の階層ごとにノードをつなげた配列で表現する方法(Levelwise Wavelet Tree. 論文
id:echizen_tm さんの記事「ウェーブレット木の効率的で簡単な実装 "The Wavelet Matrix"」から始まったウェーブレット行列ブームから半年以上が過ぎ、すでに枯れた技術として確立されつつある感があります。 …嘘です。 日本以外ではあんまり来ていません。 理由としては、やはりアルファベット圏では単語境界が明確であるため、こちらの記事で書かれているような「キーワード分割の難易度」といったことがあまり問題にならないということがあるかもしれません。 まあ、そういうわけで局所的に来ているウェーブレット行列ですが、日本語をはじめとする単語境界のない言語圏にとっては重要なネタであると思うため、解説記事を書き直して*1みようと思います。 ウェーブレット行列でできること 主となる操作は、文字列に対する 定数時間の rank() と select()*2 です。 rank() は、「文
以前、「簡潔データ構造 LOUDS の解説」というシリーズの記事を書いたことがあります。 LOUDS というのは木構造やtrieを簡潔に表すことができるデータ構造なのですが、この中で「簡潔ビットベクトル」というものについてはブラックボックスとして扱っていました。 また、中学生にもわかるウェーブレット行列を書いたときも、その中で出てきた「完備辞書」の実装には触れませんでした。 この「簡潔ビットベクトル」「完備辞書」は、同じものを指しています*1。 今回は、このデータ構造*2について書いてみます。 完備辞書でできること ビット列に対する定数時間の rank と selectです*3。 rank()は、「ビット列の先頭から位置 k までに、1 のビットがいくつあるか」*4。 select()は、「ビット列の先頭から見て、n 個目の 1 のビットの次の位置はどこか」*5。 それぞれ例を挙げます。
「日本語入力を支える技術」(通称「徳永本」)や「高速文字列解析の世界」(通称「岡野原本」)で紹介されている LOUDS というデータ構造を、12回に分けて解説しました。 友達に教える時に使ったもので、練習問題付きです。 実際に紙に書いてやってみるとわかりやすいと思います。 詳解 LOUDS (1) LOUDS とは 詳解 LOUDS (2) ビット列を作ってみる 詳解 LOUDS (3) 0番ノード 詳解 LOUDS (4) ビットの意味 詳解 LOUDS (5) 木構造の復元 詳解 LOUDS (6) インデックスでノードを表す 詳解 LOUDS (7) ノード番号からインデックスを得る 詳解 LOUDS (8) インデックスからノード番号を得る 詳解 LOUDS (9) 子ノードから親ノード 詳解 LOUDS (10) 親ノードから子ノード 詳解 LOUDS (11) 木の検索 詳解
This document summarizes features and performance of the Grnxx database system. It discusses how Grnxx handles null values, different data types, and arithmetic operations involving null values. It also describes Grnxx's performance using bitwise and logical operators on integer, float and text data types. Benchmark results show Grnxx can evaluate logical expressions on 200,000 records in 1 second
1. The document summarizes two papers about bandit algorithms. The first paper proposes a multi-level bandit algorithm that utilizes the taxonomy of ads and web pages to reduce the number of arms to explore. The second paper studies the "mortal multi-armed bandit" problem where arms have finite lifetimes. It models the death rates of arms and proposes the "Stochastic with Early Stopping" algorithm
A van Emde Boas tree (Dutch pronunciation: [vɑn ˈɛmdə ˈboːɑs]), also known as a vEB tree or van Emde Boas priority queue, is a tree data structure which implements an associative array with m-bit integer keys. It was invented by a team led by Dutch computer scientist Peter van Emde Boas in 1975.[1] It performs all operations in O(log m) time (assuming that an bit operation can be performed in cons
Pythonには文字列やリストなど、長さをもつオブジェクトがあります。長さを手に入れるには、文字列なら、name.length ではなく len(name) のようにlen関数を使います。len関数はどうやってnameに入っているオブジェクトの長さを手に入れているのでしょうか。if文にはTrue/Falseとなる条件式を指定しますが、それだけでなく文字や数字、自分で作ったデータ型も渡せます。if文はどうやって与えられたオブジェクトがTrueなのかFalseなのかを手に入れているのでしょうか。 この発表では、Pythonのプログラムがどうやって必要な情報を手に入れているのか、また、自分で実装するときにどう実装すればlen()やif文やfor文に指定できるのかを説明します。
cvpaper.challengeはコンピュータビジョン分野の今を映し、トレンドを創り出す挑戦です。論文サマリ・アイディア考案・議論・実装・論文投稿に取り組み、凡ゆる知識を共有しています。 http://xpaperchallenge.org/cv/ 本資料はxpaper.challengeの2020年末ワークショップとしてプレゼンした、研究効率化Tipsです。10研究室、200ページ超にわたるノウハウ詰め合わせです。
アルゴリズムとかデータ構造というのは、プログラミングの基礎中の基礎ですね。いまどきは、いろいろな言語において標準ライブラリで提供されていたりしますから、ただ使うだけならこれらを1から自分で書けるようになってもそんなにうれしくはないですが、必要な場面でよりよいアルゴリズムを選択できるように、概要くらいは知っておきたい物です。というわけで、ここではアルゴリズムとデータ構造についての話をしていこうかと思います。 説明やサンプルには、有無を言わせず C# を使います。 うちは C# 入門サイトですから。 ある意味、「C# によるプログラミング入門」のサンプルプログラムの延長みたいなページになってるかも。
2010/8/6,7の2日間を用いて、「言語処理のための機械学習入門」を輪読する勉強会を開催しました。 発表者の皆様、お疲れ様でした。 以下、現時点で公開されている発表スライドを掲載します。 (発表資料に問題等あれば、TwitterのDMなどで御連絡ください。サイドバーのプロフィール欄に連絡先が記載されています。) 2章:文書および単語の数学的表現 100816 nlpml sec2View more presentations from shirakia. 4章:分類 Ml for nlp_chapter_4View more presentations from hylosy.Ml4nlp 4 2View more presentations from beam2d. 5章:系列ラベリング NLPforml5View more presentations from kisa12012.
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く