タグ

algorithmとNLPに関するsomemoのブックマーク (7)

  • 手元に置いておくと安心できる、情報系の人向けな日本語の本のリスト - EchizenBlog-Zwei

    最近、人にを薦める事が多くなった。とりあえずこの辺を読むといいですよ的なリストを作っておくと便利だと思ったので作ることにした。 以下、「事前知識のいらない入門」「事前知識はいらないけど格的な」「事前知識がないと何言ってるかわからないけど有益な情報が満載な」の3つにわけて列挙する。 事前知識のいらない入門 数式少なめ、脳負荷の小さめなをいくつか。何をやるにしてもデータ構造、アルゴリズム、数学はやっておくと幸せになれるよ。 情報検索と言語処理 データマイニングとか自然言語処理とかやりたい人にはとりあえずこれ。さすがに古い話が多くなってきたのでそろそろ新しい入門用情報検索がでないかなあと思っている。 図解・ベイズ統計「超」入門 伝説のベイジアン先生がベイズの基礎を教えてくれる。ベイズやりたい人はこれ。 珠玉のプログラミング データ構造とかアルゴリズムとかの考え方の基礎を教えてく

    手元に置いておくと安心できる、情報系の人向けな日本語の本のリスト - EchizenBlog-Zwei
  • 簡潔データ構造 LOUDS の解説(全12回、練習問題付き)

    日本語入力を支える技術」(通称「徳永」)や「高速文字列解析の世界」(通称「岡野原」)で紹介されている LOUDS というデータ構造を、12回に分けて解説しました。 友達に教える時に使ったもので、練習問題付きです。 実際に紙に書いてやってみるとわかりやすいと思います。 詳解 LOUDS (1) LOUDS とは 詳解 LOUDS (2) ビット列を作ってみる 詳解 LOUDS (3) 0番ノード 詳解 LOUDS (4) ビットの意味 詳解 LOUDS (5) 木構造の復元 詳解 LOUDS (6) インデックスでノードを表す 詳解 LOUDS (7) ノード番号からインデックスを得る 詳解 LOUDS (8) インデックスからノード番号を得る 詳解 LOUDS (9) 子ノードから親ノード 詳解 LOUDS (10) 親ノードから子ノード 詳解 LOUDS (11) 木の検索 詳解

    簡潔データ構造 LOUDS の解説(全12回、練習問題付き)
  • 「言語処理のための機械学習入門」勉強会を開催しました - kisa12012の日記

    2010/8/6,7の2日間を用いて、「言語処理のための機械学習入門」を輪読する勉強会を開催しました。 発表者の皆様、お疲れ様でした。 以下、現時点で公開されている発表スライドを掲載します。 (発表資料に問題等あれば、TwitterのDMなどで御連絡ください。サイドバーのプロフィール欄に連絡先が記載されています。) 2章:文書および単語の数学的表現 100816 nlpml sec2View more presentations from shirakia. 4章:分類 Ml for nlp_chapter_4View more presentations from hylosy.Ml4nlp 4 2View more presentations from beam2d. 5章:系列ラベリング NLPforml5View more presentations from kisa12012.

    「言語処理のための機械学習入門」勉強会を開催しました - kisa12012の日記
  • 機械学習超入門 〜そろそろナイーブベイズについてひとこと言っておくか〜 - EchizenBlog-Zwei

    最近では機械学習の認知度も上がってきていて専門家でなくてもナイーブベイズやSVMなどの名前を知っている人も増えてきたように思う。 そんなわけでちょっと機械学習をはじめてみようかな、と思っている人も多いのではないだろうか。とはいえ「数式よくわからない」「確率嫌い」といった理由で尻込みしているケースも多いのでは。 そこで予備知識ゼロでもわかるような機械学習の入門記事を書いてみたよ。 機械学習を「作りたい」のか「使いたいのか」 まず最初に確認したいのがこれ。使いたいだけならまずはSVMを使ってみれば良い。世の中にはlibsvmやsvmlightという良いツールがあるのでそれを使おう。以下の記事は機械学習を「作りたい」「仕組みを知りたい」人向けの内容になっている。 「最も簡単な機械学習はナイーブベイズ」という幻想 機械学習といえばナイーブベイズという話がよくある。ナイーブ(単純)という名前からいか

    機械学習超入門 〜そろそろナイーブベイズについてひとこと言っておくか〜 - EchizenBlog-Zwei
  • スペルミス修正プログラムを作ろう

    The document focuses on product backlog refinement through structured conversations to enhance product agility in software development. Ellen Gottesdiener, an agile product coach, emphasizes the importance of refining backlog items to improve transparency and ensure they are 'ready' for sprint selection. Key benefits include increasing team velocity and optimizing collaboration among product and d

    スペルミス修正プログラムを作ろう
  • 文書比較(diff)アルゴリズム

    文書比較(diff)アルゴリズム 前のドキュメント 次のドキュメント ViViの文書比較(diff)機能で使用しているアルゴリズムについて解説する。 これらのアルゴリズムは Myers 氏らの論文によるもので、氏は筆者のためにわざわざ論文をWebサイトで入手可能な形式にしてくださった。この場を借りてお礼申し上げる。 オリジナル論文は以下のWebサイトから入手可能である。 http://www.cs.arizona.edu/people/gene [1] E.W.Myers, "An O(ND) Difference Algorithm and Its Variations", Algorithmica, 1 (1986), pp.251-266 [2] S. Wu, U. Manber, G. Myers and W. Miller, "An O(NP) Sequence Comparis

  • 「高速文字列解析の世界」を読む前に知っておくと良いこと - EchizenBlog-Zwei

    「高速文字列解析の世界」という大変すばらしいが発売された。わりと敷居が高いではあるので読む前に知っておくとよさそうなことを書いておく。 「高速文字列解析」とは 書でいう高速文字列解析というのは主に2つのことを指している。ひとつはデータを圧縮して小さくしてディスクよりメモリ、メモリよりキャッシュというようにより高速な記憶装置で扱いましょう、という話。もうひとつはデータ構造を工夫することで複雑な操作もそこそこ高速に扱えますよ、という話。つまり「圧縮」の話と「効率的なデータ構造」の話があると考えておくと良い。 キーワードは3つ オビにも書いてあるけれど、書が主に扱うのは「BWT」「簡潔データ構造」「ウェーブレット木」の3つ。具体的には「BWT」が「圧縮」に関わっていて「ウェーブレット木」が「効率的なデータ構造」に関わっている。「簡潔データ構造」は基的な道具として書の色々なところで出て

    「高速文字列解析の世界」を読む前に知っておくと良いこと - EchizenBlog-Zwei
  • 1