タグ

理論に関するtotoadadのブックマーク (9)

  • 多世界解釈 - Wikipedia

    多世界解釈(たせかいかいしゃく、英: many-worlds interpretation; MWI)とは、量子力学の観測問題における解釈の一つである。この解釈では宇宙の波動関数を実在のものとみなし、波束の収縮が生じない。そのかわり重ね合わせ状態が干渉性を失うことで、異なる世界に分岐していくと考える。 プリンストン大学の大学院生であったヒュー・エヴェレット3世が1957年に提唱した定式を元に、デコヒーレンスなどの概念が追加されて成立した。 概要[編集] 量子力学において波動関数はシュレディンガー方程式に従い、決定論的な時間発展をする。標準解釈であるコペンハーゲン解釈では、観測により波動関数が収縮することで、確率的な結果が現れる。波動関数の収縮はシュレディンガー方程式には従わない。 一方で多世界解釈では、波動関数の収縮は起こらず、常にシュレディンガー方程式が成り立つと考える。シュレディンガー

  • M理論 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "M理論" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL(2015年3月) M理論(Mりろん)とは、現在知られている5つの超弦理論を統合するとされる、11次元(空間次元が10個、時間次元が1個)の仮説理論である。尚、この理論には弦は存在せず、2次元の膜(メンブレーン)や5次元の膜が構成要素であると考えられている。 低エネルギー極限[編集] この理論の低エネルギー有効理論は、11次元超重力理論となる。この理論に登場する場は重力場(グラビトン場)・グラビティーノ場・3形式場しかなく、超弦理論の低エネルギー有効理論である10次元超重力理論よりも単

    M理論 - Wikipedia
  • 超弦理論 - Wikipedia

    超弦理論(ちょうげんりろん、英語: superstring theory)は、物質の基的な構成要素を理解するためのモデルであり、物理学の理論、仮説の1つ[1]。物質の基的単位を、大きさが無限に小さな0次元の点粒子ではなく、1次元の拡がりをもつ弦であると考える弦理論に、超対称性という考えを加え、拡張したもの。超ひも理論、スーパーストリング理論とも呼ばれる。 なお、この理論を間違いであるとする声も少なくはない。 宇宙の姿やその誕生のメカニズムを解き明かし、同時に原子、素粒子、クォークといった微小な物のさらにその先の世界を説明できる仮説として、この理論の中ではほぼ矛盾なく高度に完成している。[要出典]しかし、理論を裏付けるような実験結果は十分得られていない。また、この理論を実証する実験のために必要なエネルギーは、人類が扱える範囲を逸脱していると想定されるため、この理論の検証可能性については

    超弦理論 - Wikipedia
  • 弦理論 - Wikipedia

    弦理論(げんりろん、英: string theory)は、粒子を0次元の点ではなく1次元の弦として扱う理論、仮説のこと。ひも理論、ストリング理論とも呼ばれる。 概要[編集] 1970年に南部陽一郎、レオナルド・サスキンド 、ホルガー・ベック・ニールセン (Holger Bech Nielsen|en) [1]が独立に発表したハドロンに関する理論によって登場したものの、量子色力学にその座を譲った。しかし、1984年にマイケル・グリーンとジョン・シュワルツ (John Henry Schwarz) が発表した超対称性及び、カルツァ=クライン理論を取り入れた超弦理論 (superstring theory)によって、再び表舞台に現れた。4つの基相互作用を統一する試みとして注目されている。 最近では、超弦理論やM理論を含む広い意味で「弦理論 (string theory)」と呼ぶことも多い[2]

    弦理論 - Wikipedia
  • ループ量子重力理論 - Wikipedia

    ループ量子重力理論(ループりょうしじゅうりょくりろん)は、時空(時間と空間)にそれ以上の分割不可能な最小単位が存在することを記述する理論である。超弦理論と並び、重力の古典論である一般相対性理論を量子化した量子重力理論の候補である[1]。 同じく量子重力理論の候補である超弦理論は、時空は背景場として最初からそこに存在するものとして定義しており、理論自身のダイナミクスにより決定されているわけではない。それに対しループ量子重力理論は、一般相対論と同様に理論自身が時空そのものを決定している。(背景独立性) 理論の内容[編集] 時空は、質的に連続で滑らかな値をとるものと考えられてきたが、この理論で時空は、結晶格子のように離散的な値をとるものと考えられている。このため、時空を連続的なものととらえたときに起きる短距離極限の発散が生じないという利点がある。一般相対性理論から要求される座標変換に対する形式

    ループ量子重力理論 - Wikipedia
  • 量子重力理論 - Wikipedia

    量子重力理論(りょうしじゅうりょくりろん、quantum gravity theory)は、重力相互作用(重力)を量子化した理論である。単に量子重力(りょうしじゅうりょく:Quantum Gravity(QG), Quantum Gravitation)または重力の量子論(Quantum Theory of Gravity)などとも呼ばれる。 ユダヤ系ロシア人のマトベイ・ブロンスタインがパイオニアとされる。一般相対性理論と量子力学の双方を統一する理論と期待されている。物理学の基礎概念である時間、空間、物質、力を統一的に理解するための鍵であり、物理学における最重要課題の一つと言われている[1]。 量子重力理論は現時点ではまったく未完成の未知の理論である。量子重力を考える上で最大の問題点はその指針とすべき基的な原理がよく分かっていないということである。そもそも重力は自然界に存在する四つの力(

    量子重力理論 - Wikipedia
  • 超重力理論 - Wikipedia

    超重力理論(ちょうじゅうりょくりろん)とは、一般相対論を超対称化した理論、言い方を変えれば局所超対称性の理論である。量子化した際は、単なる一般相対論より紫外発散が弱くなるため、量子重力理論の文脈において1980年代初頭に精力的に研究された。超対称性のゲージ理論と考えることもできる。対応するゲージ場がグラヴィティーノである。 概説[編集] 素粒子論における粒子の作用やラグランジアンはローレンツ変換に対し不変になるように作られているが、粒子にローレンツ不変性だけを要求した場合、スカラー場やベクトル場などのボゾン場の他に二つの独立なスピノル場を定義することが出来る。超対称性とは、スピノル場(フェルミオン的弦)とボゾン場(ボゾン的弦)の間に対称性が存在する、とする理論である。超場形式では、ボゾン、右手型/左手型フェルミオン、補助場をグラスマン座標の冪で表した「超場(超多重項)」を導入し、超場を用い

    超重力理論 - Wikipedia
  • 一般相対性理論 - Wikipedia

    質量(地球)が2次元で描いた格子模様の平面に落とし込まれた状態を描いた説明図。格子模様をゆがめている様子が視認できる。また、歪んでいる格子模様自体が重力と解釈できる。この説明図を一般人にも理解できるよう例えるなら、重い物がトランポリンに沈む状態と同じである。 一般相対性理論(いっぱんそうたいせいりろん、独: allgemeine Relativitätstheorie, 英: general theory of relativity)は、アルベルト・アインシュタインが1905年の特殊相対性理論に続いて、それを発展させ1915年から1916年にかけて発表した物理学の理論である。一般相対論(いっぱんそうたいろん、英: general relativity)とも呼ばれる。 概要[編集] 重力場の概念図。中心に近づくほど重力が大きい。 一般相対性原理と一般共変性原理および等価原理を理論的な柱とし、

    一般相対性理論 - Wikipedia
  • 特殊相対性理論 - Wikipedia

    すなわち、時間と空間は、そこにある物体の存在や運動に影響を受けないと仮定した[2]。これをもって、我々が日常的直観として抱いている時間や空間に対する根的感覚を表そうとした[2]。この絶対時間をかかげるニュートン力学においても、あらゆる慣性系は質的に等価(すなわち相対的)でもある。ニュートン力学では、2つの慣性座標系(慣性系Aおよび慣性系B)における同一点A = (t, x)とB = (t′, x′)を示す関係は、次に示すガリレイ変換によって結ばれている。 ここで t, x は慣性系Aにおける時刻と位置であり、t′, x′ は慣性系Bにおける時刻と位置である。v は、慣性系Aから見た慣性系Bの移動速度である。 狭義の例を示すならば、ある座標系Aに対して等速直線運動する別の座標系Bがあるとして、これら二つの座標系は質的に等価(相対的)である。すべての基準となる静止座標系といった概念は、上

    特殊相対性理論 - Wikipedia
  • 1