タグ

数学に関するuzu64のブックマーク (20)

  • ナンプレ (いわゆる数独) の問題生成アルゴリズムの話。 | blog.dnpp.org

    概要 iOS と macOS ネイティブなアプリを作った ので、技術的な話を書きます。 詳細 拠所無い事情からコンピュータサイエンスというか基的なアルゴリズムの実装の勉強を leetcode でやっていた時期が 2023 年の 9 月頃にありまして、「折角勉強したんだし何か作るか」という気持ちでアプリを作りまして…。 リリースまでなんとか持っていった訳なんですが、実装だけならいいものの、ゲームデザインとか、 Web サイト作成とか、アイコン含むいわゆるデザイン的なものとか、そういうのも当に 1 人で全部やってたからなんやかんや 3 ヶ月かかってしまって、まぁ大変だったんですがそこそこ満足な出来栄えになったので是非ダウンロードして触ってみてください。 数独はニコリの登録商標となっているためアプリの名称はナンプレとしていますが、この記事はアルゴリズムの技術的な解説やゲームデザインの話といっ

  • 仏紙が唸る「数学を世間に広める能力で、時枝正にかなう者はいない」 | 直感の逆を突き、驚かせ、人の未知への欲求を刺激する

    スタンフォード大学の教授で数学者の時枝正(ときえだ・ただし)は、「おもちゃ」を使って数学や物理の定理を解き明かす。スープ皿や木のレール、大きなコインを手に、「ショー」とも呼べそうな講義をいかにも楽しげに始めるその姿に、聴衆は一瞬にして心を惹きつけられるという。 数学者には二つのタイプがいるという──。一つは、チョークを握り黒板に向かう、理論派タイプ。もう一つは、フェルトペンとホワイトボードを使う、どちらかというと応用数学系の人である。 その伝でいうと、時枝正は第三のタイプの数学者である。しかもこの第三のタイプは、世界広しといえども彼一人だけの可能性がある。 時枝は仕事道具をどれも煎の空箱から取り出すのだが、箱は「すべて同じブランドのもの」なのだそうだ。たとえばその中身は、見かけはそっくりなのに、転がるものと転がらないものがある二つの不思議な構造物。ひもや輪ゴム、クリップの扱い方は、まるで

    仏紙が唸る「数学を世間に広める能力で、時枝正にかなう者はいない」 | 直感の逆を突き、驚かせ、人の未知への欲求を刺激する
    uzu64
    uzu64 2023/06/10
  • 数学の歴史的ブレイクスルー。絶対に繰り返されない「アインシュタイン」のタイルを発見

    何十年も探し求められた「アインシュタイン」のタイルがついに発見されたそうだ。 それは13の辺を持つジグソーパズルのような図形で、どれだけ並べても、絶対に同じパターンが繰り返されることはない。 数学の世界で「非周期的モノタイル」と呼ばれるこの形状の発見は、数学歴史の革新的発見(ブレイクスルー)と称されている。 この図形の不思議さとすごさ、面白さを説明していこう。 非周期的タイルとは何か? 「アインシュタイン」とは言っても、あの天才物理学者アルベルト・アインシュタインのことではない。ドイツ語で「1つの石」のことで、つまりは1枚のタイルであることを意味するものだ。 これについて、発見者の1人であるカナダ、ウォータールー大学のクレイグ・カプラン教授は、「私たちは史上初の物の”非周期的モノタイル”を紹介しています」と声明で述べている。 「非周期的タイル」とは何か? それは平面を隙間なく、かつ重な

    数学の歴史的ブレイクスルー。絶対に繰り返されない「アインシュタイン」のタイルを発見
  • ぶく on Twitter: "神チャンネルを見つけてしまった。10年前のカリキュラムだが、長岡亮介先生(数学者・元駿台予備校講師)の高校数学の授業がほぼ全部無料で観れる。中高生の予習・復習や、社会人の学び直しに有用そう。 https://t.co/s7LBvrUkKu"

    ぶく on Twitter: "神チャンネルを見つけてしまった。10年前のカリキュラムだが、長岡亮介先生(数学者・元駿台予備校講師)の高校数学の授業がほぼ全部無料で観れる。中高生の予習・復習や、社会人の学び直しに有用そう。 https://t.co/s7LBvrUkKu"
  • 150 分で学ぶ高校数学の基礎

    [重要なお知らせ (2023/8/12)] 現在,スライドの p.10 に不十分な記述があります.ルートの答えは 0 以上の数に限定することに注意してください (たとえば -3 を 2 乗しても 9 ですが,ルート 9 は -3 ではありません).なお,現在筆者のパソコンが修理中でデータがないので,修…

    150 分で学ぶ高校数学の基礎
    uzu64
    uzu64 2022/09/07
  • 「数学書を読んでる人を眺めるだけの漫画」が全然わからんけどめちゃくちゃわかる「内容わからんけど性癖に刺さる」

    リンク Wikipedia 公理的集合論 公理的集合論(こうりてきしゅうごうろん、axiomatic set theory)とは、公理化された集合論のことである。 現在一般的に使われている集合の公理系は以下のZF公理系、またはZF公理系に下で述べる選択公理(Axiom of Choice)を加えた ZFC公理系(Zermelo-Fraenkel set-theory with the axiom of Choice)である。選択公理を仮定しない体系も盛んに研究されている。 またZC,ZでそれぞれZFC,ZFから置換公理を除いたもの、Z-、ZF-、 34 users 3 睦月 @gbhatu227 よく訓練された人でないと数学書読んでも楽しくないので、あっ!解けた!という快感を味わうために中学入試算数から始めてみるとお手軽かも、あれ大人でもぱっと解けないですよ

    「数学書を読んでる人を眺めるだけの漫画」が全然わからんけどめちゃくちゃわかる「内容わからんけど性癖に刺さる」
  • 旧限界数学ゼミガール

    某所に投稿していた限界数学ゼミガールのまとめです(2019.11.27 ~ 2019.12.22) 公理的集合論と数理論理学がメインです。 第一話 「巨大基数の崩壊」 第二話 「クレパの木」 第三話 「ペアノの公理系」 第四話 「ストーンの表現定理」 第五話 「ゲーデルの不完全性定理」 おまけ 最初期の落書きです この頃から寝ている子が頭が良いキャラ(議論が詰まった時のブロックバスター)というのはぼんやりながら固まってました(笑)

    旧限界数学ゼミガール
  • 数学・物理学の知識を理解するための「足りない知識」を「ツリー構造」で掘り下げていける学習サイト「コグニカル」レビュー

    分野が広く、さまざまな知識を求められる数学や物理学。これらの知識をツリー構造により分からないところまでひたすら掘り下げて、基礎の基礎から学ぶことができる学習サイトが「コグニカル」です。一体何かどう学べるのか?ということで、実際にコグニカルを使ってみました。 コグニカル https://cognicull.com/ja コグニカルのトップページはこんな感じ。「ばねの弾性力による位置エネルギー」「位置エネルギー」など、数学・自然科学・工学のさまざまな知識が353個並んでいます。 試しに「熱振動」をクリックすると、「熱振動とは、分子など、原子の集合で生じる原子の振動のことです。」と、熱振動について記述されたページが表示されました。また、分子と原子が振動している様子のイメージがアニメーションで表示されています。 読み進めていくと、「説明が理解できない場合」は「以下の知識が不足している可能性がありま

    数学・物理学の知識を理解するための「足りない知識」を「ツリー構造」で掘り下げていける学習サイト「コグニカル」レビュー
  • クォータニオンとは何ぞや?:基礎線形代数講座 - SEGA TECH Blog

    ---【追記:2022-04-01】--- 「基礎線形代数講座」のPDFファイルをこの記事から直接閲覧、ダウンロードできるようにしました。記事内後半の「公開先」に追記してあります。 --- 【追記ここまで】--- みなさん、はじめまして。技術部 開発技術部のYです。 ひさびさの技術ブログ記事ですが、タイトルからお察しの通り、今回は数学のお話です。 #数学かよ って思った方、ごめんなさい(苦笑) 数学の勉強会 弊社では昨年、有志による隔週での数学の勉強会を行いました。ご多分に漏れず、コロナ禍の影響で会議室に集合しての勉強会は中断、再開の目処も立たず諸々の事情により残念ながら中止となり、用意した資料の配布および各自の自学ということになりました。 勉強会の内容は、高校数学の超駆け足での復習から始めて、主に大学初年度で学ぶ線形代数の基礎の学び直し 、および応用としての3次元回転の表現の基礎の理解

    クォータニオンとは何ぞや?:基礎線形代数講座 - SEGA TECH Blog
  • 「2乗してはじめて0になる数」とかあったら面白くないですか?ですよね - アジマティクス

    「その数自体は0でないのに、2乗するとはじめて0になる数」ってなんですか? そんな数あるはずがないと思いますか? でももしそんな数を考えることができるなら、ちょっとワクワクすると思いませんか? 今回はそんな謎の数のお話。 実数の中には、「2乗して0になる数」というのは0しかありません。 (2乗して0になる実数は0しかない図) ということは、「2乗してはじめて0になる数」というのがあるとしたら、それは実数ではありえません。 「1年A組にはメガネの人はいないので、メガネの人がいたとしたらその人は1年A組ではありえない」くらいの当たり前のことを言っています。 この辺の議論は、複素数で「」を導入したときと同じですね。 「実数の中には、2乗して-1になる数というのは存在しないので、それがあるとしたら実数ではありえない」ということで「虚数」であるが導入されるわけです。 それならばということで、ここでは

    「2乗してはじめて0になる数」とかあったら面白くないですか?ですよね - アジマティクス
    uzu64
    uzu64 2021/03/23
  • コグニカル

    コグニカルは、足りない知識を掘り下げて理解する学習サイトです。

  • 線形代数とは?初心者にもわかりやすい解説 | HEADBOOST

    「線形代数を簡単に理解できるようになりたい…」。そう思ったことはないでしょうか。当ページはまさにそのような人のためのものです。ここでは線形代数の基礎のすべてを、誰でもすぐに、そして直感的に理解できるように、文章だけでなく、以下のような幾何学きかがく的なアニメーションを豊富に使って解説しています。ぜひご覧になってみてください(音は出ませんので安心してご覧ください)。 いかがでしょうか。これから線形代数の基礎概念のすべてを、このようなアニメーションとともに解説していきます。 線形代数の参考書の多くは、難しい数式がたくさん出てきて、見るだけで挫折してしまいそうになります。しかし線形代数は来とてもシンプルです。だからこそ、これだけ多くの分野で活用されています。そして、このシンプルな線形代数の概念の数々は、アニメーションで視覚的に確認することで、驚くほどすんなりと理解することができます。 実際のと

    線形代数とは?初心者にもわかりやすい解説 | HEADBOOST
    uzu64
    uzu64 2021/02/11
  • 音階の数学|じーくどらむす

    私の大好きな数学者の名言で、「音楽は感性の数学であり、数学は理性の音楽である」という言葉があります。 数を原理とするピタゴラス教団がピタゴラス音律を作り出し、そこから純正律という整数比率によるハーモニーを重視した音律が作られたことからも、音楽数学の関係性は深いと言えるでしょう。 しかし、 実際に数学を多少わかって、音楽を多少嗜んでいる方であれば、音楽で使われる様々な単位への違和感を感じたことがあるのではないでしょうか。 とにかく既存の音楽理論や音楽文化が、「12音種」「7幹音」「5線譜」「1から数える」すべてが噛み合っていない感じがすごい。この噛み合ってない上で究極の覚えゲーを重ねがけして理論作り上げてんのヤバい。 — じーくどらむす/岩翔 (@geekdrums) July 12, 2020 音楽を取り巻く数への違和感まずこの「12音階」(ド~シまで、#、♭も含めた1オクターブ以内の

    音階の数学|じーくどらむす
  • 物理と数学の履修時期は常に1年すれ違っている

    物理学は常に数学の発展と共に進歩してきた。 というより物理学からの必要に駆られた要請によって新たな数学の概念が切り開かれてきた。 したがって当然、物理を学ぶ際には現象そのものの理解とその裏に潜む数学的内容の理解が両輪となるのだが、 なぜだか日の学校教育においては、この前提が上手く機能していない。 物理分野においてある現象を習ったその翌年に、ようやく数学分野において必要な概念が登場するといった具合だ。 具体的には、以下のようなものがある。 小学校6年の理科で「てこ」の法則性を学ぶ。この背景にあるはずの「反比例」の関係は中学1年の数学で習う。中学校3年の理科で力の分解を学ぶ。この背景にあるはずの「三角比」は高校1年の数学Ⅰで習う。中学校3年の理科で運動エネルギーを学ぶ。この背景にあるはずの「二次関数」は高校1年の数学Ⅰで習う。高校1年の物理基礎で等加速度運動を学ぶ。この背景にあるはずの「多項

    物理と数学の履修時期は常に1年すれ違っている
  • 「きょうも数学やるぞ」は甘い 京大数理研という異世界:朝日新聞デジタル

    ","naka5":"<!-- BFF501 PC記事下(中⑤企画)パーツ=1541 -->","naka6":"<!-- BFF486 PC記事下(中⑥デジ編)パーツ=8826 --><!-- /news/esi/ichikiji/c6/default.htm -->","naka6Sp":"<!-- BFF3053 SP記事下(中⑥デジ編)パーツ=8826 -->","adcreative72":"<!-- BFF920 広告枠)ADCREATIVE-72 こんな特集も -->\n<!-- Ad BGN -->\n<!-- dfptag PC誘導枠5行 ★ここから -->\n<div class=\"p_infeed_list_wrapper\" id=\"p_infeed_list1\">\n <div class=\"p_infeed_list\">\n <div class=\"

    「きょうも数学やるぞ」は甘い 京大数理研という異世界:朝日新聞デジタル
    uzu64
    uzu64 2020/04/05
  • 「群」って何なの?「同一視」から始める群論 - アジマティクス

    ものを知れば知るほど、いつも歩いている道なんかも解像度が上がって見えてくるわけです。 花の名前や雲の種類、建築の様式などはその代表格でしょう。 同じように、知れば知るほど数学の見え方の解像度が上がる(にも関わらず、高校までの数学ではまったくと言っていいほど出てこない)ものの代表格が「線形代数」と「群論」だと思っています。 線形代数については過去にこのブログで扱ったことがあるのでそちらを参照いただくとして、今回は知れば知るほど身の回りにあふれていることがわかって驚かされる「群」という概念のご紹介です。 一体、群とは何なのでしょうか? とある3つの表 CASE-1 足して4で割る 0,1,2,3という4つの数がありますね。世の中には。 この4つの数に対して、「2数を足して、その答えを4で割ったあまりをとる」という演算を考えます。 例えば「2」と「3」に対してこの演算をすると「1」となります。

    「群」って何なの?「同一視」から始める群論 - アジマティクス
  • サービス終了のお知らせ

    サービス終了のお知らせ いつもYahoo! JAPANのサービスをご利用いただき誠にありがとうございます。 お客様がアクセスされたサービスは日までにサービスを終了いたしました。 今後ともYahoo! JAPANのサービスをご愛顧くださいますよう、よろしくお願いいたします。

  • 3Blue1Brown

    My name is Grant Sanderson. Videos here cover a variety of topics in math, or adjacent fields like physics and CS, all with an emphasis on visualizing the co...

    3Blue1Brown
    uzu64
    uzu64 2019/04/04
  • 【GIF多め】ギャラリー:目で見る複素数 - アジマティクス

    2乗して-1になる数「」と、実数を使って「」と表される数を複素数といいます。 複素数は、和をとったり積をとったり逆数をとったりといろいろできるわけですが、それらを図示してみるときれいな構造が見えることがあります。 この記事は、細かい解説はそこそこにして、複素数を眺めてうわ〜きれいだね〜素敵だね〜っていう記事です。 複素平面 任意の複素数は、平面上の一点として表すことができます。 今でこそ「複素数といえば平面」というイメージがあるかもしれませんが、「複素数を平面上の一点として表す」というのは驚くほど画期的なアイデアです。 それまで、複素数は「方程式を解く途中にだけ出てきて、いざ解かれたあかつきには消えてしまう」という「便宜的な数」「虚構の数」と思われていました。 ガウスによって「複素平面」のアイデアが導入されてようやく複素数が図形的な表れを伴った。複素数にはそんな歴史があるようです。 複素数

    【GIF多め】ギャラリー:目で見る複素数 - アジマティクス
  • 三角関数、何に使うの?→点を回すことができます(すごい) - アジマティクス

    数学的な内容を表現したアニメーションをいろいろ作って遊んでます。例えばこんなのとか。 素因数ビジュアライズ。大きく灰色で表示された数字の素因数が線を横切ります pic.twitter.com/z1MHJzPtbv — 鯵坂もっちょ🐟 (@motcho_tw) February 7, 2018 たくさんの点を、それぞれの点に書かれた数に応じた速度で回すことにより、大きく灰色で表示された数の素因数を表現しているわけです。楽しいですね。 こんなのもあります。 3Dで図示してみました。 pic.twitter.com/AF2R1QEtqk — 鯵坂もっちょ🐟 (@motcho_tw) April 12, 2017 九九におけるの段の「一の位」は、ぐるぐる回る点によって表現することができます。面白いですね。 変わったものでは、こういうのもあります。 惑星が「惑星」と呼ばれる理由ですhttps:/

    三角関数、何に使うの?→点を回すことができます(すごい) - アジマティクス
    uzu64
    uzu64 2019/01/11
  • 1