タグ

関連タグで絞り込む (2)

タグの絞り込みを解除

rとcovid19に関するxiangzeのブックマーク (3)

  • 西浦先生らによる実効再生産数の統計モデルを解説&拡張する試み - StatModeling Memorandum

    先日の西浦先生のニコ生の発表を聞いていない人はぜひ聞いてください。 モデルとデータを以下のリポジトリでオープンにしていただいたので、モデルについて僕が分かる範囲内で少し解説を加えたいと思います。 github.com 実効再生産数を推定するコードが2種類ありまして、最尤推定(Maximum Likelihood Estimation, MLE)を使ったMLE版(Sungmok Jungさん作成)と 、ベイズ推定版(Andrei Akhmetzhanovさん作成)があります。どちらもコンセプトはほぼ同じで、実装が若干異なります。この記事では、ベイズ推定版(以降、元コードと呼びます)の流れを簡単に説明し、その後でその拡張を試みます。 ベイズ推定版の流れ 大きく分けて「データの集計」「back projection」「実効再生産数の推定」の3つの部分からなります。 データの集計 まずは日付ごとの

    西浦先生らによる実効再生産数の統計モデルを解説&拡張する試み - StatModeling Memorandum
  • 新型肺炎COVID-19の日本の実効再生産数を推定したrstanのコードを解説してみる - 驚異のアニヲタ社会復帰の予備

    西浦先生が日の実効再生産数を推定した。 コードはrstanで下記から取れる。 https://nbviewer.jupyter.org/github/contactmodel/COVID19-Japan-Reff/tree/master/ 解説動画を見逃したのでコードと関連論文からのお勉強になるが、肝としては、 ・知りたいのは「感染した日」である。 ・診断日もしくは報告日は、データを収集して統計を取っているのでわかる。 ・診断されるには検査される必要があるから、だいたい症状か接触歴があって、発症日はそこそこデータがある。 ・感染した瞬間、はもちろん発病(はほとんど)していないのでわからない。 という前提がある。PDFの「患者」の観測データについて、の項。 (誰からから感染させられる)ー感染日ー発症日ー診断日/報告日という一連の流れについて、まったく情報がないわけではなく、いままでの数理モ

  • Simulating COVID-19 interventions with R

    Tim Churches is a Senior Research Fellow at the UNSW Medicine South Western Sydney Clinical School at Liverpool Hospital, and a health data scientist at the Ingham Institute for Applied Medical Research. This post examines simulation of COVID-19 spread using R, and how such simulations can be used to understand the effects of various public health interventions design to limit or slow its spread.

  • 1