エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
Python の高速化 - MicroAd Developers Blog
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
Python の高速化 - MicroAd Developers Blog
はじめに 機械学習エンジニアの大庭です。普段はマイクロアドが提供する広告配信プラットフォーム UNIVE... はじめに 機械学習エンジニアの大庭です。普段はマイクロアドが提供する広告配信プラットフォーム UNIVERSE Ads に接続する機械学習 API の研究開発をしています。 マイクロアドでは、機械学習モデルの学習側との連携が容易なこととメンテナンス性を重視して Python で機械学習 API を実装しています。Python は使いやすい反面、基本文法は速いとは言えない言語です。そのため、実行時間制約の厳しい Real Time Bidding (RTB) のなかで使うには高速化を意識しておく必要があります。今回は様々ある Python の高速化手法の理解と整理のため記事にしました。 個人的にですが、Python の高速化は以下の手順で行っていくのがいいと思っています。この記事では、この手順毎に便利なツールやライブラリをまとめました。 ボトルネックの特定 計算量(オーダー)を減らす コード