
エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
【翻訳】scikit-learn 0.18 User Guide 3.3. モデル評価:予測の質を定量化する - Qiita
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
【翻訳】scikit-learn 0.18 User Guide 3.3. モデル評価:予測の質を定量化する - Qiita
>>> >>> from sklearn import svm, datasets >>> from sklearn.model_selection import cross_val_score... >>> >>> from sklearn import svm, datasets >>> from sklearn.model_selection import cross_val_score >>> iris = datasets.load_iris() >>> X, y = iris.data, iris.target >>> clf = svm.SVC(probability=True, random_state=0) >>> cross_val_score(clf, X, y, scoring='neg_log_loss') array([-0.07..., -0.16..., -0.06...]) >>> model = svm.SVC() >>> cross_val_score(model, X, y, scoring='wrong_choice') Traceback (m