
エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
SHAP(SHapley Additive exPlanation)についての備忘録 - Qiita
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
SHAP(SHapley Additive exPlanation)についての備忘録 - Qiita
背景・目的 ブラックボックス化しがちな機械学習モデルを解釈し、なぜその予測値が出ているのかの説明に... 背景・目的 ブラックボックス化しがちな機械学習モデルを解釈し、なぜその予測値が出ているのかの説明に役立つSHAP値について、理解を深めるべく論文や公式資料を漁りました。自分用の備忘録としてこちらに内容をまとめておきます。 SHAPとは何か? 正式名称はSHapley Additive exPlanationsで、機械学習モデルの解釈手法の1つ なお、「SHAP」は解釈手法自体を指す場合と、手法によって計算された値(SHAP値と呼ぶこともある)を指す場合がある NIPS2017 1にて発表された 論文はA Unified Approach to Interpreting Model Predictions それまでに存在した解釈手法(Additive Feature Attribution Methods。 LIMEの基本アイデア)に協力ゲーム理論のShapley Valueを導入して改良し