今年もアドベントの季節が来ました。この記事は、まつーらとしお氏の主催する、アドベントカレンダー「言語学な人々」2023の12月16日のエントリーとして書かれました。今年は、カレンダー増刷で、黒木邦彦氏主催の、別館(言語学なるひとびと)もあります。どちらもご覧下さい。 和歌集の歌風の分析日本の古典和歌集には、それぞれの性格があります。『万葉集』は自然を歌っていて、「素朴」な歌もあるが、『古今集』は、宮中の「優雅」な伝統を反映している、など、言い方はいろいろあり得ますが、それぞれ異なった歌風を持っていることは間違いありません。それを、コンピュータ、特にAIで分析してみるというのがこのエントリーの内容です。日本語学会の機関誌『日本語の研究』19巻3号(2023年12月)に掲載した拙論(「和歌集の歌風の言語的差異の記述ー大規模言語モデルによる分析−」)の解説記事となります(来年6月にはJSTAGE
これをもとに再度計算し直すと、(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2) = (2.07, 0.576, -3.91\times 10^{-3})、今度は \hat{\beta}_1=0.567 であり家賃が月収増加額に対して57.6%上昇するという随分大きな値が出てしまった。 このように、入力データが少し変わっただけで、線形回帰係数の推定値が大きく変化してしまう。 この原因は、説明変数として円単位の月収 X_1 とほぼ同じ意味を持ち相関も強い X_2、つまりドル単位の月収も含まれていることにある。 なお、もし X_1 だけ用いて予測を行っていれば、いずれの家賃データを入力として用いても回帰係数 \hat{\beta}_1 の推定値はおおよそ 0.30、つまり「月収が10,000円高ければ家賃がその約30%の3,000円程度高いところに住む傾
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く