エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
線形回帰において「多重共線性があると推定が不安定になる」とは?〜図と理論で理解する〜
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
線形回帰において「多重共線性があると推定が不安定になる」とは?〜図と理論で理解する〜
これをもとに再度計算し直すと、(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2) = (2.07, 0.576, -3.91... これをもとに再度計算し直すと、(\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2) = (2.07, 0.576, -3.91\times 10^{-3})、今度は \hat{\beta}_1=0.567 であり家賃が月収増加額に対して57.6%上昇するという随分大きな値が出てしまった。 このように、入力データが少し変わっただけで、線形回帰係数の推定値が大きく変化してしまう。 この原因は、説明変数として円単位の月収 X_1 とほぼ同じ意味を持ち相関も強い X_2、つまりドル単位の月収も含まれていることにある。 なお、もし X_1 だけ用いて予測を行っていれば、いずれの家賃データを入力として用いても回帰係数 \hat{\beta}_1 の推定値はおおよそ 0.30、つまり「月収が10,000円高ければ家賃がその約30%の3,000円程度高いところに住む傾