並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 801件

新着順 人気順

if else in list pythonの検索結果1 - 40 件 / 801件

  • 日本のウェブデザインの特異な事例

    sabrinas.spaceより。 8週間もかからなかったはずのプロジェクト 日本のウェブデザインはどう違うのか? 2013年のRandomwireのブログ投稿で、著者(David)は、日本のデザインの興味深い相違点を強調しました。日本人はミニマリストのライフスタイルで海外に知られていますが、ウェブサイトは奇妙なほどマキシマリストです。ページには様々な明るい色(3色デザイン原則を破っている)、小さな画像、そして多くのテキストが使われています。2022年11月に撮影されたこれらのスクリーンショットで、自分の目で確かめて下さい。 ブログ投稿には、文化的専門家、デザイナー仲間、そして不満を抱く市民によって支持されている、考えられる理由がいくつか挙げられていました。 この理論が今でも正しいのか、また、もっと定量的なアプローチが可能なのか気になったのでやってみました。 私が見つけたもの 各国の最も人

      日本のウェブデザインの特異な事例
    • Command Line Interface Guidelines

      Contents Command Line Interface Guidelines An open-source guide to help you write better command-line programs, taking traditional UNIX principles and updating them for the modern day. Authors Aanand Prasad Engineer at Squarespace, co-creator of Docker Compose. @aanandprasad Ben Firshman Co-creator Replicate, co-creator of Docker Compose. @bfirsh Carl Tashian Offroad Engineer at Smallstep, first e

        Command Line Interface Guidelines
      • Python自然言語処理テクニック集【基礎編】

        自分がよく使用する日本語自然言語処理のテンプレをまとめたものです。 主に自分でコピペして使う用にまとめたものですが、みなさんのお役に立てれば幸いです。 環境はPython3系、Google Colaboratory(Ubuntu)で動作確認しています。 Pythonの標準機能とpipで容易にインストールできるライブラリに限定しています。 機械学習、ディープラーニングは出てきません!テキストデータの前処理が中心です。 前処理系 大文字小文字 日本語のテキストにも英語が出てくることはあるので。 s = "Youmou" print(s.upper()) # YOUMOU print(s.lower()) # youmou 全角半角 日本語だとこちらのほうが大事。 全角半角変換のライブラリはいくつかありますが、自分はjaconv派。 MIT Licenseで利用可能です。 import jaco

        • 退屈なことはPythonにやらせよう 第2版

          一歩先行くハイパフォーマンスなビジネスパーソンからの圧倒的な支持を獲得し、自作RPA本の草分けとして大ヒットしたベストセラー書の改訂版。劇的な「業務効率化」「コスト削減」「生産性向上」を達成するには、単純な繰り返し作業の自動化は必須です。本書ではWordやExcel、PDF文書の一括処理、Webサイトからのダウンロード、メールやSMSの送受信、画像処理、GUI操作といった日常業務でよく直面する面倒で退屈な作業を、Pythonと豊富なモジュールを使って自動化します。今回の改訂では、GmailやGoogleスプレッドシートの操作、Pythonと各種モジュールの最新版への対応、演習等を増補しています。日本語版では、PyInstallerによるEXEファイルの作成方法を巻末付録として収録しました。 関連ファイル サンプルコード 正誤表 書籍発行後に気づいた誤植や更新された情報を掲載しています。お手

            退屈なことはPythonにやらせよう 第2版
          • ChatGPTに社内文書に基づいた回答を生成させる仕組みを構築しました - コネヒト開発者ブログ

            はじめに はじめまして、8月にコネヒトに入社したy.ikenoueです。 突然ですがみなさん、生成AIは使っておりますでしょうか? ChatGPTやStable Diffusionといった代表的な生成AIの発表から約1年が経過し、そろそろブームも落ち着くかと思っていたのですが、つい先日もOpenAI DevDayにてChatGPTに関する様々なアップデートが発表されるなど、相変わらず目まぐるしい日々が続いていますね。 弊社における生成AIの活用状況はというと、以前に下記の記事にて、Slack上でChatGPTと会話できる環境を社内提供しているという取り組みをご紹介しました。 tech.connehito.com 本日は、上記の社内ツールに新たに追加した「社内文書の参照機能」についてご紹介します。 「社内文書の参照機能」の概要と開発動機 まずは「社内文書の参照機能」の概要と開発にいたった動機

              ChatGPTに社内文書に基づいた回答を生成させる仕組みを構築しました - コネヒト開発者ブログ
            • 日本株3700社以上を分析。yfinance x「わが投資術」株式スクリーニングアプリを作った話(バイブコーディング)

              いきなりですが。 海外旅行したり働き始めたりすると、日本の良さが身に染みたと感じた人は多いんじゃないでしょうか? なんかとりあえず外で働いてみたいと思っていましたが、今はいつ戻るかと考える日々です。(とにかく温泉に入りたい) また色々と各国を回る中で、日本企業ってアジア圏や他の国にもかなり進出してるんだなぁと実感しました。(そりゃそう) そんなこんなで日本株に興味を持ち 昨年にわが投資術を購入して実践し始めました。(まだ初めて一年目なので成績はわかりません。。。が、マイナスは無し) 自分でバフェットコードや Claude mcp-yfinance などを利用しながらスクリーニングしてみましたが、毎回決算が出るたびに手動とチャット相手にあるのも何かなぁ。と思いまして。 じゃあ自動収集とスクリーニング用のアプリ作ってみよう(vibe coding) そんなノリから、日本株全銘柄を自動収集・簡易

                日本株3700社以上を分析。yfinance x「わが投資術」株式スクリーニングアプリを作った話(バイブコーディング)
              • This is The Entire Computer Science Curriculum in 1000 YouTube Videos

                This is The Entire Computer Science Curriculum in 1000 YouTube Videos In this article, we are going to create an entire Computer Science curriculum using only YouTube videos. The Computer Science curriculum is going to cover every skill essential for a Computer Science Engineer that has expertise in Artificial Intelligence and its subfields, like: Machine Learning, Deep Learning, Computer Vision,

                  This is The Entire Computer Science Curriculum in 1000 YouTube Videos
                • Bulk insertでも20時間以上かかっていたMySQLへのインサート処理を1時間以内にする - エムスリーテックブログ

                  この記事はエムスリー Advent Calendar 2022の30日目の記事です。 前日は id:kijuky による チームメンバーのGoogleカレンダーの休暇予定一覧をスプレッドシート+GASで作った でした。 AI・機械学習チームの北川(@kitagry)です。 今回はMySQLへのインサートを20倍以上高速化した話について書きます。 仕事をちゃんとしてるか見張る猫 TL; DR はじめに 今回のテーブル バイナリログを無効化する 追試 LOAD DATA INFILE 追試 テーブルの正規化 インデックスを一時的に剥がす まとめ We are hiring!! TL; DR バイナリログをオフにする LOAD DATA INFILEを使う インデックスを一時的に消す はじめに AI・機械学習チームではサイトトップからアプリに至るまで多くの推薦システムがあります。 そこでは推薦ロ

                    Bulk insertでも20時間以上かかっていたMySQLへのインサート処理を1時間以内にする - エムスリーテックブログ
                  • 暗号の歴史と現代暗号の基礎理論(RSA, 楕円曲線)-後半- - ABEJA Tech Blog

                    はじめに このブログに書かれていること 自己紹介 注意 Part3 現代の暗号 共通鍵暗号方式と鍵配送問題 鍵配送問題とは? 共通鍵暗号方式と公開鍵暗号方式の違いとメリット・デメリット RSA暗号 RSAで使われる鍵 処理手順 暗号化の手順 復号の手順 RSA暗号の数学的背景 一次不定式が自然数解を持つ理由 eとLの関係性 そもそもなぜこの式で元の平文に戻るのか?の数学的根拠 証明パート1 フェルマーの小定理 中国剰余定理 RSA暗号をPythonで 楕円曲線暗号 楕円曲線とは? 楕円曲線の式 楕円曲線における足し算の定義 楕円曲線における引き算の定義 無限遠点 楕円曲線における分配法則と交換法則 楕円曲線の加法を式で表現 点Pと点Qが異なる場合 点Pと点P 同じ点を足し合わせる場合 有限体 有限体とは? 有限体上の楕円曲線 楕円曲線暗号における鍵 ECDH鍵共有 数式ベースでの手順説明

                      暗号の歴史と現代暗号の基礎理論(RSA, 楕円曲線)-後半- - ABEJA Tech Blog
                    • OpenAI API の ファインチューニングガイド|npaka

                      1. ファインチューニングの利点ファインチューニングの利点は、次のとおりです。 (1) プロンプトよりも高品質な応答 (2) プロンプトに収まりきらないより多くの例の適用 (3) プロンプトの短縮によるトークン数 (コスト) の節約 (4) プロンプトの短縮による処理時間の短縮 モデルは膨大な量のテキストで事前学習されており、このモデルを効果的に利用するため、プロンプトに手順や応答の例を指定する手法が使われます。この例を使用してタスクの実行方法を示すことを「Few-Shot」と呼びます。 ファインチューニングで、プロンプトに収まりきらないより多くの例で学習することにより、さまざまなタスクでより良い結果を達成できるようになります。プロンプトに多くの例を指定する必要はなくなります。これによりトークン (コスト) が節約され、処理時間も短縮されます。 2. ファインチューニングの使用料金ファイン

                        OpenAI API の ファインチューニングガイド|npaka
                      • MCPサーバーが切り拓く!自社サービス運用の新次元 - エムスリーテックブログ

                        こんにちは、エムスリーエンジニアリンググループ、コンシューマチームの園田です。本記事では、外部サービスとAIエージェントの連携を可能にするMCPプロトコルについて、技術検証の実装例を交えてお話しします。 1. MCPとは(ざっくり) MCP(Model Context Protocol)とは、Anthropic社によって策定されたAIエージェントが外部サービスから情報を参照したり連携することを目的としたプロトコルです。 「MCPサーバー」は、GitHubやPostgreSQLといったリソースをMCPで喋れるように変換してあげるプロキシのようなサーバーです。 Claude DesktopやCursorなどはMCPクライアントの機能があり、GitHubなどのMCPサーバーを利用してナレッジとして利用したり、プルリクエストの作成なども行えます。 Introduction - Model Cont

                          MCPサーバーが切り拓く!自社サービス運用の新次元 - エムスリーテックブログ
                        • とほほのHaskell入門 - とほほのWWW入門

                          概要 Haskellとは 関数型言語 純粋関数型言語 インストール Haskell Stack Hello world 基本 予約語 コメント ブロック レイアウト 入出力 型 変数 数値 文字(Char) 文字列(String) エスケープシーケンス リスト([...]) タプル((...)) 演算子 関数 演算子定義 再帰関数 ラムダ式 パターンマッチ ガード条件 関数合成(.) 引数補足(@) 制御構文 do文 let文 if文 case文 where文 import文 ループ データ型 データ型(列挙型) データ型(タプル型) データ型(直和型) 新型定義 (newtype) 型シノニム (type) 型クラス (class) メイビー(Maybe) ファンクタ(Functor) アプリケイティブ(Applicative) モナド(Monad) モジュール (module) 高階関

                          • プログラミング言語論入門 - riswu’s blog

                            第0章. なぜ Scala を使うのか? はじめに 本稿は、John C. Mitchell 氏らによる Concepts in Programming Languages を基に自身の見解を交え、私がなぜ Scala を好んで使うのかを論じた記事になります。 プログラミング言語の歴史 本題に入る前に、プログラミング言語の歴史について紹介します。 年代 言語・イノベーション 1950 Fortran and Cobol 1960 Lisp and Algol 1970 Abstract data types (Simula, C, SQL) 1980 Objects (Smalltalk, C++) 1990 Java, JavaScript, Python, Ruby これは、年代ごとに開発された言語およびイノベーションを表にまとめたものになります。ただし、この表には欠けている事柄があり

                              プログラミング言語論入門 - riswu’s blog
                            • 技術blogのリンクを投げたらChatGPTが要約して、いい感じに整形してチャンネル投稿してくれるbotを社内Slackに生やしたら捗った話

                              こんにちは、株式会社シグマアイのエンジニアの@k_muroです。 今回の記事は最近導入した「技術blogを良い感じに共有してくれるSlack bot」のご紹介を。 はじめに 技術の進化は止まらない。(真面目な話、AI系の進捗がマジですごいて全然追えない) 毎日のように新しい技術、フレームワーク、ライブラリ、ツールが生まれています。そんな中でエンジニアとして働いていると、この情報の波に疲れを感じること、ありませんか? ありますよね?(脅迫) 実際私もその一人で、この小さな疲れが積み重なって大きなストレスとなることに気づきました。 「新しい技術情報、追いつけるかな?」 「あのブログ記事、後で読もうと思ってたのに、どこいったっけ?」 「チーム全員が同じ情報を持ってるか心配だな。」 そんな日常の疑問や不安から逃れるための一歩として、私はあるSlack botを開発しました。このbotは、送られた技

                                技術blogのリンクを投げたらChatGPTが要約して、いい感じに整形してチャンネル投稿してくれるbotを社内Slackに生やしたら捗った話
                              • 【2020年】CTF Web問題の攻撃手法まとめ - こんとろーるしーこんとろーるぶい

                                はじめに 対象イベント 読み方、使い方 Remote Code Execution(RCE) 親ディレクトリ指定によるopen_basedirのバイパス PHP-FPMのTCPソケット接続によるopen_basedirとdisable_functionsのバイパス JavaのRuntime.execでシェルを実行 Cross-Site Scripting(XSS) nginx環境でHTTPステータスコードが操作できる場合にCSPヘッダーを無効化 GoogleのClosureLibraryサニタイザーのXSS脆弱性 WebのProxy機能を介したService Workerの登録 括弧を使わないXSS /記号を使用せずに遷移先URLを指定 SOME(Same Origin Method Execution)を利用してdocument.writeを順次実行 SQL Injection MySQ

                                  【2020年】CTF Web問題の攻撃手法まとめ - こんとろーるしーこんとろーるぶい
                                • 【感想】『Amazon Web Servicesを使ったサーバーレスアプリケーション開発ガイド』:Lambdaで本格サービス開発まで - Rのつく財団入り口

                                  サーバーレスアプリケーション開発ガイド Lambda関数を用いたサーバーレス開発をもっと知っておこうと思って読んだ本の感想です。2018年4月刊行、サーバーレスの主要サービス解説にコードはPython、のみならずフロントはVue.jsを使った本格開発まで、実践的な内容が詰まった本です。 作者は現Amazon Web Services Japan所属のKeisuke69こと西谷圭介さん。Twitterでもよくお見掛けします。(@Keisuke69) サーバーレスアプリケーション開発ガイド Chapter1 サーバーレスアプリケーションの概要 1-1 サーバーレスアプリケーションとは 1-2 ユースケースとアーキテクチャパターン 1-3 サーバーレスアプリケーションのライフサイクル管理 Chapter2 Amazon Web Services(AWS)利用の準備 Chapter3 インフラを自

                                    【感想】『Amazon Web Servicesを使ったサーバーレスアプリケーション開発ガイド』:Lambdaで本格サービス開発まで - Rのつく財団入り口
                                  • 結婚式のエンドロールを当日作った話

                                    結婚のお礼と報告 でちょこっと書いた結婚式エンドロールをその場で作ってみたのお話 注意事項# 結婚式のエンドロールを自作したりするには結婚式場の協力が必須です。 作り出す前に式場に必ず確認を取りましょう。 PCからそのままプロジェクトにだせばいいじゃん!と思い込むのだめです(自戒) 動機# エンドロールを式場にお願いしようと思ったら高かったので、最近のイケてるサービスとか適当にガッチャンコすれば作れると思った。 今は反省している。 全体の構成# LINE Botに参加者から画像投稿を投げてもらう S3に保存すると同時に投稿者情報をDynamoDBに保存 投稿された画像にDynamoDBの投稿者情報から名前を追記 画像を全部結合して動画化し、事前に生成したエンドロールで必要な部分を結合 式の最後に流してもらう 全体の構成はこんな感じです。 サーバーレスアーキテクチャのお勉強がてら作ろうとした

                                      結婚式のエンドロールを当日作った話
                                    • CPUエミュレータをRustで自作する - Don't Repeat Yourself

                                      この記事は Rust Advent Calendar 2020 ならびに CyberAgent Developers Advent Calendar 25日目の記事です。 今年のはじめの頃になりますが、『CPUの創り方』という本に載っている TD4 という CPU を実装してみました。TD4 は「とりあえず動作するだけの4bit CPU」の略です。この本に載っている CPU エミュレータを実際に実装してみました。ただし、本書には GUI が載っていましたが、それは省略しました。 CPUの創りかた 作者:渡波 郁発売日: 2003/10/01メディア: 単行本(ソフトカバー) 「最近話題の RISC-V などの CPU エミュレータを作ってみたいものの、いきなり作るにはハードルが高い。何か簡単なもので素振りをして CPU の動作の仕組みをまずは知りたい」という方にはかなりオススメできる教材だ

                                        CPUエミュレータをRustで自作する - Don't Repeat Yourself
                                      • Pythonで理解するMCP(Model Context Protocol) | gihyo.jp

                                        動作環境 Python 3.12 ライブラリの使用バージョン gradio 5.34.2 anthropic 0.54.0 mcp 1.9.4 python-dotenv 1.1.0 仮想環境とライブラリインストール % cd mcp-host-with-gradio % python3 -m venv venv % source venv/bin/activate (venv) % pip install gradio anthropic mcp dotenv .envファイルの設定 AnthropicのAPIキーが必要です。APIキーの作成は以下を参考にしてください。APIの利用には料金がかかりますが、API従量課金であれば5ドルから始めることが可能です。 Claudeを使い始める -Anthropic .env ANTHROPIC_API_KEY=xxxxxxxxxxxxxxxxxx

                                          Pythonで理解するMCP(Model Context Protocol) | gihyo.jp
                                        • Webサーバの仕組みについて入門してみた(Python実装) - iimon TECH BLOG

                                          はじめに 株式会社iimonでSREエンジニアをしているhogeです。 本記事はiimonアドベントカレンダー9日目の記事となります。 今回の記事は技術的な棚卸しとして、普段大変お世話になっているWebサーバがどういった仕組みで動いているのかを実装しながら深堀りしていこうと思います。 弊社のバックエンドはDjango/FastAPI + Gunicornの構成で動作しているため、Pythonを絡めた説明が多くなるかと思います。サンプルコードもPythonで実装をしています。 途中、システムコールやファイルディスクリプタなどにも踏み込んだ話をするのですが、低レベルなプログラミングをちゃんとやったことがないため、間違えている部分があるかもしれません。今後学習して行く中で気づいたら都度修正していきたいと思います。 環境・使用ツール 言語 Python OS Ubuntu(Linuxのシステムコー

                                            Webサーバの仕組みについて入門してみた(Python実装) - iimon TECH BLOG
                                          • 再帰的な構造のデータの同値性判定はどうしたらいいか - 貳佰伍拾陸夜日記

                                            数日前にTwitterで, JavaScriptのオブジェクトに対する===の挙動が初心者には難しいみたいな話を見かけた. 発端や周辺の議論をちゃんと追いかけてないからとくに出典は貼らない. たぶん元々の話は「へぇ, こういう挙動なんだ, 簡単ではないね」くらいの話だったのかもしれない. 自分のタイムラインの観測範囲では「そうだそうだ, (参照の同一性ではなく)同値性にしとけばいいのに」と思っている人もそれなりにいそうに見えた. 個人的にも同値性が簡単に確認できるとよい気はするものの, 「なんでそうしないんだ, オブジェクトの中身を確認していくだけだろ!」みたいな簡単な話ではないことも知っているため, 以下のようなツイートをしたのだった. JavaScriptのオブジェクトの同値性、再帰的な構造とか作るとぜんぜん自明じゃないんだよなぁ。リンクの構造は違うけどプロパティを辿ったときのパスはど

                                              再帰的な構造のデータの同値性判定はどうしたらいいか - 貳佰伍拾陸夜日記
                                            • 「ベクトル検索 vs 全文検索」〜Amazon Bedrockの埋め込みモデルを用いたプロトタイピング〜 - コネヒト開発者ブログ

                                              ※ この記事は、AWS (Amazon Web Services) の技術支援を受けて執筆しています。 はじめに この記事はコネヒトアドベントカレンダー 8日目の記事です。 コネヒト Advent Calendar 2023って? コネヒトのエンジニアやデザイナーやPdMがお送りするアドベント カレンダーです。 コネヒトは「家族像」というテーマを取りまく様々な課題の解決を 目指す会社で、 ママの一歩を支えるアプリ「ママリ」などを 運営しています。 adventar.org こんにちは!コネヒトの機械学習エンジニア y.ikenoueです。 突然ですがみなさん、Amazon Bedrockをご存知でしょうか。 aws.amazon.com Amazon Bedrock(以下、Bedrock)は、テキスト生成AIをはじめとする基盤モデル (Foundation Model)*1を提供するAWS

                                                「ベクトル検索 vs 全文検索」〜Amazon Bedrockの埋め込みモデルを用いたプロトタイピング〜 - コネヒト開発者ブログ
                                              • Gemini 2.5 Proと取り組んだデータ分析のリアルな道のり - Nealle Developer's Blog

                                                はじめに はじめまして。Analyticsチームの清水です。 2024年12月に入社しまして、約4ヶ月が経過しました。今回が初めてのテックブログになります。 ▼先日、入社エントリも公開しました。 本稿のテーマは、自由記述のテキストをラベリングして分類する分析タスクに対し、Geminiと共に取り組んで分かったことの共有です。 私は生成AIをそれほどたくさん使った経験があるわけではないので、これが最良の使い方というわけではないと思いますが、どのようにプロンプトを組み立て、どう効率的に分析を進められたのかを可能な限りリアルに書いていきます。 ※今回利用したモデルは、Gemini 2.5 Proです。 はじめに Geminiを活用したデータ分析の進め方 フェーズ0: アプローチの模索 - Notebook LMや教師なし学習の試行 フェーズ1: データ理解とラベルチェック - コード生成と探索的分

                                                  Gemini 2.5 Proと取り組んだデータ分析のリアルな道のり - Nealle Developer's Blog
                                                • N番目の素数を求める - すぎゃーんメモ

                                                  SNSなどで話題になっていたので調べてみたら勉強になったのでメモ。 環境 Pythonでの実装例 例1 例2 例3 エラトステネスの篩 Rustでの実装例 試し割り法 エラトステネスの篩 アトキンの篩 おまけ: GMP Benchmark 高速化のテクニック 上限個数を見積もる Wheel factorization オチ Repository References 環境 手元のMacBook Pro 13-inchの開発機で実験した。 2.8 GHz Intel Core i7 16 GB 2133 MHz LPDDR3 Pythonでの実装例 例1 最も単純に「2以上p未満のすべての数で割ってみて余りが0にならなかったら素数」とする、brute force 的なアプローチ。 import cProfile import io import pstats import sys def m

                                                    N番目の素数を求める - すぎゃーんメモ
                                                  • LangChainを使わない - ABEJA Tech Blog

                                                    TL; DR LangChainのメリデメを整理する過程で、今となってはopenai-pythonのうちChatGPTのAPIをを簡単に取り回せる程度のシンプルなライブラリがあるだけでも十分便利なんじゃないかと思ったので、ライブラリを個人で作ってみました。(バージョン0.0.1なのでちょっとお粗末な所もありますが) github.com はじめに こんにちは、データサイエンティストの坂元です。ABEJAアドベントカレンダーの13日目の記事です。世は大LLM時代ということで、ありがたいことにABEJAでも複数のLLMプロジェクトを推進させて頂いています。私自身もいくつかのLLMプロジェクトに参画しています。LLMといえばLangChainが便利ですね。OpenAI APIの利用だけでなく、各種ドキュメントのパースが出来たり、HuggingFaceやインデックスDBを扱う他のライブラリとインテ

                                                      LangChainを使わない - ABEJA Tech Blog
                                                    • キャッシュフローを考慮して賃貸と分譲を比較する - draftcode.osak.jp

                                                      キャッシュフローを考慮……? 例えばなのだが「1000 万円を〇〇に投資したら、10 年後に 1300 万円になりました! 300 万円、つまり 30%も儲かりました!」というような話をしている人がいる。これは儲かったと言えるのだろうか?これを年利に換算すると、2.6%程度の利益になる。これはインフレ率が 2-3%という前提で考えると、実質的にはほとんど儲からなかったもしくは損をした、 ということになる。S&P500 の平均リターンは 10%程度ということを考えると、ちょっと分が悪い投資だな、という感想になるだろう。これが逆に 1 年で 1300 万円になった場合は、 30%のリターンになるので、これはかなりいい投資だった、ということになる。 このように、投資の成果を評価するときには、単純に金額だけでなく、キャッシュフローを考慮することが重要になる。賃貸と不動産購入を比較するときに、「購入

                                                      • OpenAIのプロンプトジェネレーターで至高のプロンプトを生成する - Taste of Tech Topics

                                                        こんにちはイワツカです。 食欲の秋ということでサツマイモやキノコが美味しい季節ですね。 さて今回は、生成AIを使おうと思ってもプロンプトの書き方がよく分からず、生成AIから思ったような回答を得られない...なんて方におススメのOpenAIのプロンプトジェネレーター機能を紹介します。 1. プロンプトジェネレーターとは 使い方 2. ユースケースごとのプロンプトと結果比較 Pythonコードのリファクタリング プロンプトジェネレーターを使わない場合 プロンプトジェネレーターを使う場合 API設計 プロンプトジェネレーターを使わない場合 プロンプトジェネレーターを使う場合 ブログ作成 プロンプトジェネレーターを使わない場合 プロンプトジェネレーターを使う場合 3. まとめ 1. プロンプトジェネレーターとは プロンプトジェネレーターとは、その名の通り、AIに対する指示文(プロンプト)を自動的に

                                                          OpenAIのプロンプトジェネレーターで至高のプロンプトを生成する - Taste of Tech Topics
                                                        • LLMフレームワークのセキュリティリスク - LangChain, Haystack, LlamaIndex等の脆弱性事例に学ぶ - GMO Flatt Security Blog

                                                          はじめに こんにちは。GMO Flatt Security株式会社セキュリティエンジニアの森(@ei01241)です。 近年、大規模言語モデル(LLM)の進化により、チャットボット、データ分析・要約、自律型エージェントなど、多岐にわたるAIアプリケーション開発が進んでいます。LangChainやLlamaIndexのようなLLMフレームワークは、LLM連携や外部データ接続などを抽象化し開発効率を向上させる一方、その利便性の背後には新たなセキュリティリスクも存在します。 本稿では、LLMフレームワークを利用・開発する際に発生しやすい脆弱性を具体的なCVEを交えて解説し、それぞれ脆弱性から教訓を学びます。そして、それらの教訓から開発者が知っておくべき対策案についても紹介します。 また、GMO Flatt SecurityはLLMを活用したアプリケーションに対する脆弱性診断・ペネトレーションテス

                                                            LLMフレームワークのセキュリティリスク - LangChain, Haystack, LlamaIndex等の脆弱性事例に学ぶ - GMO Flatt Security Blog
                                                          • Why, after 6 years, I’m over GraphQL

                                                            GraphQL is an incredible piece of technology that has captured a lot of mindshare since I first started slinging it in production in 2018. You won’t have to look far back on this (rather inactive) blog to see I have previously championed this technology. After building many a React SPA on top of a hodge podge of untyped JSON REST APIs, I found GraphQL a breath of fresh air. I was truly a GraphQL h

                                                            • MCP(Model Context Protocol)を活用したJグランツ補助金検索システムの実装例|デジタル庁

                                                              デジタル庁プロダクトマネージャーユニットの土岐竜一です。事業者の手続システム総括班で、Jグランツを含む事業者向けシステムなどを担当しています。 この記事では、デジタル庁が運用する補助金電子申請システム「Jグランツ」のAPIを、Anthropic社が提唱するModel Context Protocol(MCP) によりラッピングし、LLMから利用可能なシステムのサンプル設計および実装について説明します。 具体的には、Pythonで簡単に実装できるFastMCPフレームワークを利用し、Jグランツの補助金検索や詳細の取得などの実用的な機能を備えたMCPサーバーを例として実装します。なお、本記事におけるコードはGitHubよりダウンロード可能です。 本実装例で実現できること今回紹介するMCPサーバーを利用すると、LLM(Claudeなど)を通じて、以下のような自然言語によるJグランツの補助金検索や

                                                                MCP(Model Context Protocol)を活用したJグランツ補助金検索システムの実装例|デジタル庁
                                                              • 俺が考える最強の「麻雀点数申告練習アプリケーション」を作ってみる ~ Pythonによる麻雀点数計算問題の自動生成と音声による点数申告 ~ - エムスリーテックブログ

                                                                こちらはエムスリー Advent Calendar 2023 1日目の記事です。 Overview エムスリーエンジニアリンググループ AI・機械学習チームでソフトウェアエンジニアをしている中村(po3rin) です。趣味は麻雀でフリー雀荘で毎年200半荘以上打ちます。好きな麻雀プロは園田賢さんです。 麻雀を始めるときに一番の障壁になるのは点数計算ではないでしょうか? 特に符計算が初心者の関門のようです。一方私のような初中級者でも突然のレアな点数申告にまごつくことがあります。 そこで、今回はその人に合った麻雀の点数計算問題(主に符計算が焦点となる問題)を生成して、自分で点数計算&点数申告の練習をする方法を探求したのでその紹介をします。麻雀用語が少しだけ登場するので、対象読者は麻雀を少しでもかじったことのあるエンジニアの方です。 Overview 麻雀の点数計算の難しさ 現状の点数計算の練習

                                                                  俺が考える最強の「麻雀点数申告練習アプリケーション」を作ってみる ~ Pythonによる麻雀点数計算問題の自動生成と音声による点数申告 ~ - エムスリーテックブログ
                                                                • Python普及しろ協会に入会したい

                                                                  この記事はタナイ氏によるPython滅ぼす協会に入会したいを読んでから執筆したものです。 この記事の趣旨はPython滅ぼす協会に入会したいに対する反論という形をとりながら、タナイ氏により「バカの言語」と揶揄され、「使ってエンジニアを名乗るというのは」「滑稽」とまで言われたPythonの立場を再考することです。 追記 本記事は「Pythonはこれだけ優れた言語だからみんな使おう!」というものではなく「言うほど酷くないと思うよ」程度のものです。 型アノテーションがあるからと言って静的型付けを軽視しているわけでもなければ、map関数をもってmapメソッドを不要だと言っているわけでもありません。 この記法は嫌い〜この記法が好き〜と表明することは個人の自由ですが、同様に「この記法は実はこういう意味があって〜」という意見があればそれを聞いた上で、物事を判断して欲しいです。もちろん、聞いても意見が変わ

                                                                    Python普及しろ協会に入会したい
                                                                  • Python Web UIフレームワークで作るデスクトップアプリ | gihyo.jp

                                                                    寺田 学(@terapyon)です。2024年4月の「Python Monthly Topics」は、Python Web UIフレームワークの1つであるStreamlitを使ってWindowsやmacOSのデスクトップアプリを作る方法を解説します。 目的⁠・モチベーション Pythonで自動化のスクリプトを作ったり、JupyterLabやColaboratoryでデータの可視化を行うことがあります。これらを作成者以外の多くの方に利用してもらう方法として、Webシステムやデスクトップアプリとして提供する方法が考えられます。 Webシステムの構築やデスクトップアプリの作成となると、技術的なハードルがあります。他には、時間的なコストに見合わないという状況もあり得ます。 Python Web UIフレームワークを使うことで、比較的少ないコードでWeb UIからスクリプトの実行や可視化をするアプリ

                                                                      Python Web UIフレームワークで作るデスクトップアプリ | gihyo.jp
                                                                    • 大実験!ChatGPTは競プロの問題を解けるのか (2024年5月版) - E869120's Blog

                                                                      1. はじめに 2024 年 5 月 14 日、OpenAI 社から新たな生成 AI「GPT-4o」が発表され、世界に大きな衝撃を与えました。これまでの GPT-4 よりも性能を向上させただけでなく1、音声や画像のリアルタイム処理も実現し、さらに応答速度が大幅に速くなりました。「ついにシンギュラリティが来てしまったか」「まるで SF の世界を生きているような感覚だ」という感想も見受けられました。 しかし、いくら生成 AI とはいえ、競技プログラミングの問題を解くのは非常に難しいです。なぜなら競技プログラミングでは、問題文を理解する能力、プログラムを実装する能力だけでなく、より速く答えを求められる解法 (アルゴリズム) を考える能力も要求されるからです。もし ChatGPT が競技プログラミングを出来るようになれば他のあらゆるタスクをこなせるだろう、と考える人もいます。 それでは、現代最強の

                                                                        大実験!ChatGPTは競プロの問題を解けるのか (2024年5月版) - E869120's Blog
                                                                      • MySQL のインデクスが利用されないクエリ等を自動検出する ExplainPolice の運用について

                                                                        LINE株式会社は、2023年10月1日にLINEヤフー株式会社になりました。LINEヤフー株式会社の新しいブログはこちらです。 LINEヤフー Tech Blog LINE 株式会社 B2B Platform 開発担当フェローの Matsuno です。 LINE の Business Platform ではメインのデータベースとして MySQL を利用しています。MySQL は非常に高速に動く OSS の RDBMS なので、とても便利に利用させていただいております。 MySQL はとても高速なのですが、うっかり index を使わないクエリを発行した場合に実行がとても遅くなってしまうことがあります。LINE の Business Platform はとても多くのお客様が利用されるので、B2B としては異例なほどトラフィックが多く、少し遅いクエリが発生した結果としてサイト全体がダウンして

                                                                          MySQL のインデクスが利用されないクエリ等を自動検出する ExplainPolice の運用について
                                                                        • PerlからGoへのシステム移行のアシスト 〜Perl XSとUnix Domain Socketを活用〜 - Mirrativ Tech Blog

                                                                          こんにちは ハタ です。 Mirrativ では 2020年頃から サーバサイドの技術をPerlからGoへのシステム移行 を行っており、2024年現在でもサグラダファミリアのように移行作業は継続しています PerlとGoという2つの環境を同時に運用していますが、 基本的には 新機能は Go で実装 し、 Perlでは積極的に新規実装を行わない というスタイルで進めていました しかし、既存の機能の一部に手を加えたいとなった場合、まだまだ Perl の実装に手を加えることが一定あり、Perl から Go の機能を呼び出したいというニーズが出てきました (配信やギフトといったビジネスの根幹を支えるレガシーな実装においては顕著) そこで PerlXS を利用することで Perl から Go を直接呼び出せるようにできないかと考え検証を進めることにしました Goの -buildmode=c-shar

                                                                            PerlからGoへのシステム移行のアシスト 〜Perl XSとUnix Domain Socketを活用〜 - Mirrativ Tech Blog
                                                                          • マルチAIエージェントのアプリをChainlitで爆速開発しよう - Qiita

                                                                            せっかく作ったAIエージェントは一般ユーザにも届けたいですよね?? 皆さん、AIエージェント触ってますか? 私は最近LangGraphを触るのが楽しいです。 せっかく作ったエージェントは一般ユーザにも届けたいですよね?? で、あればフロントエンドも作りたいんですが、これが私の様な素人には意外と難しいです。 APIとしてデプロイして蹴って使うのも手間ですし、Streamlitで実装するのも、 チャット履歴は?ツールを使った場合の表示はどうする?など意外と考える事が多くて面倒です。 もっとエージェント開発に注力してフロントエンドはサクッとモダンなものを実装したい... そんな風にして調べていたらChainlitと出会ってしまいました。 ※この記事の続編はこちら [Chainlit✖︎AWS]超簡単!?LangGraphマルチエージェントのチャット履歴をAWSクラウド上に保存しよう Chainl

                                                                              マルチAIエージェントのアプリをChainlitで爆速開発しよう - Qiita
                                                                            • プロと読み解く Ruby 3.1 NEWS - クックパッド開発者ブログ

                                                                              技術部の笹田(ko1)と遠藤(mame)です。クックパッドで Ruby (MRI: Matz Ruby Implementation、いわゆる ruby コマンド) の開発をしています。お金をもらって Ruby を開発しているのでプロの Ruby コミッタです。 本日 12/25 に、ついに Ruby 3.1.0 がリリースされました(Ruby 3.1.0 リリース )。今年も Ruby 3.1 の NEWS.md ファイルの解説をします。NEWS ファイルとは何か、は以前の記事を見てください。 プロと読み解く Ruby 2.6 NEWS ファイル - クックパッド開発者ブログ プロと読み解くRuby 2.7 NEWS - クックパッド開発者ブログ プロと読み解くRuby 3.0 NEWS - クックパッド開発者ブログ 本記事は新機能を解説することもさることながら、変更が入った背景や苦労な

                                                                                プロと読み解く Ruby 3.1 NEWS - クックパッド開発者ブログ
                                                                              • 私のチームで行っているドキュメント管理方法の紹介(GitHub Actions, S3, AsciiDoc) | DevelopersIO

                                                                                ドキュメントツールのインストール(Windows) Macの場合の設定方法は、本項の後に記載 PowerShellの起動 各種ツールをインストールするため、PowerShellを管理者として実行 Windowsボタンを押下 powershell と入力 右クリックで管理者として実行 を選択します Chocolateyのインストール 本手順は前述で起動したPowerShellを利用 1.Chocolatey のサイトにアクセスし、インストールコマンドをクリップボードへコピー 2.前項でコピーしたコマンドをPowerShellにペーストして実行します Set-ExecutionPolicy Bypass -Scope Process -Force; [System.Net.ServicePointManager]::SecurityProtocol = [System.Net.ServiceP

                                                                                  私のチームで行っているドキュメント管理方法の紹介(GitHub Actions, S3, AsciiDoc) | DevelopersIO
                                                                                • Pythonプロジェクトを快適にするために導入したツールとその設定 | DevelopersIO

                                                                                  start: if [ -n "${ENV}" ]; then \ .venv/bin/dotenv --file ${ENV} run -- .venv/bin/python src/main.py; \ lint: poetry run pysen run lint lint-fix: poetry run pysen run format && \ poetry run pysen run lint test-unit: poetry run pytest install-dev: poetry install install: poetry install --no-dev 本番環境のみ入れたいパッケージがある場合 IoT開発等では、開発時はMacで本番はラズパイみたいなケースの場合、アーキテクチャ依存で追加できないパッケージがあったりします。 例えばRPi.GPIOは、GPIOが

                                                                                    Pythonプロジェクトを快適にするために導入したツールとその設定 | DevelopersIO