並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 333件

新着順 人気順

python create list for rangeの検索結果1 - 40 件 / 333件

  • ChatGPT プラグイン機能一覧|しおぱん

    こんにちは。しおぱんです。ChatGPTのプラグインがあまりに多すぎて大変だったので、プラグイン機能一覧を作りました。 【お知らせ】 プラグインの増加速度が早すぎるため、記事作成が追いついておりません🙇 お急ぎの方はこの記事作成でも利用しております、こちらのプロンプトを使ってみてください🙌 【カテゴリ検索の方法】 ブラウザの検索バーに [カテゴリ名] を入力すると絞り込みできます🙆 Mac: Command + F / Windows: Ctrl + F 【カテゴリ一覧】 [エンタメ] [音楽・音声] [画像・動画] [学習] [学術] [語学] [プログラミング] [ビジネス] [マーケティング] [ファイナンス] [ニュース] [ツール] [リサーチ] [ウェブアクセス] [天気] [旅行] [レストラン] [ショッピング] [医療・健康] [不動産] [求人] [ユーティリティ

      ChatGPT プラグイン機能一覧|しおぱん
    • Python自然言語処理テクニック集【基礎編】

      自分がよく使用する日本語自然言語処理のテンプレをまとめたものです。 主に自分でコピペして使う用にまとめたものですが、みなさんのお役に立てれば幸いです。 環境はPython3系、Google Colaboratory(Ubuntu)で動作確認しています。 Pythonの標準機能とpipで容易にインストールできるライブラリに限定しています。 機械学習、ディープラーニングは出てきません!テキストデータの前処理が中心です。 前処理系 大文字小文字 日本語のテキストにも英語が出てくることはあるので。 s = "Youmou" print(s.upper()) # YOUMOU print(s.lower()) # youmou 全角半角 日本語だとこちらのほうが大事。 全角半角変換のライブラリはいくつかありますが、自分はjaconv派。 MIT Licenseで利用可能です。 import jaco

      • 技術blogのリンクを投げたらChatGPTが要約して、いい感じに整形してチャンネル投稿してくれるbotを社内Slackに生やしたら捗った話

        こんにちは、株式会社シグマアイのエンジニアの@k_muroです。 今回の記事は最近導入した「技術blogを良い感じに共有してくれるSlack bot」のご紹介を。 はじめに 技術の進化は止まらない。(真面目な話、AI系の進捗がマジですごいて全然追えない) 毎日のように新しい技術、フレームワーク、ライブラリ、ツールが生まれています。そんな中でエンジニアとして働いていると、この情報の波に疲れを感じること、ありませんか? ありますよね?(脅迫) 実際私もその一人で、この小さな疲れが積み重なって大きなストレスとなることに気づきました。 「新しい技術情報、追いつけるかな?」 「あのブログ記事、後で読もうと思ってたのに、どこいったっけ?」 「チーム全員が同じ情報を持ってるか心配だな。」 そんな日常の疑問や不安から逃れるための一歩として、私はあるSlack botを開発しました。このbotは、送られた技

          技術blogのリンクを投げたらChatGPTが要約して、いい感じに整形してチャンネル投稿してくれるbotを社内Slackに生やしたら捗った話
        • 【2020年】CTF Web問題の攻撃手法まとめ - こんとろーるしーこんとろーるぶい

          はじめに 対象イベント 読み方、使い方 Remote Code Execution(RCE) 親ディレクトリ指定によるopen_basedirのバイパス PHP-FPMのTCPソケット接続によるopen_basedirとdisable_functionsのバイパス JavaのRuntime.execでシェルを実行 Cross-Site Scripting(XSS) nginx環境でHTTPステータスコードが操作できる場合にCSPヘッダーを無効化 GoogleのClosureLibraryサニタイザーのXSS脆弱性 WebのProxy機能を介したService Workerの登録 括弧を使わないXSS /記号を使用せずに遷移先URLを指定 SOME(Same Origin Method Execution)を利用してdocument.writeを順次実行 SQL Injection MySQ

            【2020年】CTF Web問題の攻撃手法まとめ - こんとろーるしーこんとろーるぶい
          • Webサーバの仕組みについて入門してみた(Python実装) - iimon TECH BLOG

            はじめに 株式会社iimonでSREエンジニアをしているhogeです。 本記事はiimonアドベントカレンダー9日目の記事となります。 今回の記事は技術的な棚卸しとして、普段大変お世話になっているWebサーバがどういった仕組みで動いているのかを実装しながら深堀りしていこうと思います。 弊社のバックエンドはDjango/FastAPI + Gunicornの構成で動作しているため、Pythonを絡めた説明が多くなるかと思います。サンプルコードもPythonで実装をしています。 途中、システムコールやファイルディスクリプタなどにも踏み込んだ話をするのですが、低レベルなプログラミングをちゃんとやったことがないため、間違えている部分があるかもしれません。今後学習して行く中で気づいたら都度修正していきたいと思います。 環境・使用ツール 言語 Python OS Ubuntu(Linuxのシステムコー

              Webサーバの仕組みについて入門してみた(Python実装) - iimon TECH BLOG
            • プロと読み解く Ruby 3.0 NEWS - クックパッド開発者ブログ

              技術部の笹田(ko1)と遠藤(mame)です。クックパッドで Ruby (MRI: Matz Ruby Implementation、いわゆる ruby コマンド) の開発をしています。お金をもらって Ruby を開発しているのでプロの Ruby コミッタです。 本日 12/25 に、ついに Ruby 3.0.0 がリリースされました。一昨年、昨年に続き、今年も Ruby 3.0 の NEWS.md ファイルの解説をします。NEWS ファイルとは何か、は一昨年の記事を見てください(なお Ruby 3.0.0 から、NEWS.md にファイル名を変えました)。 プロと読み解く Ruby 2.6 NEWS ファイル - クックパッド開発者ブログ プロと読み解くRuby 2.7 NEWS - クックパッド開発者ブログ Ruby 3.0 は、Ruby にとってほぼ 8 年ぶりのメジャーバージョンア

                プロと読み解く Ruby 3.0 NEWS - クックパッド開発者ブログ
              • ChatGPTに渡す文章の適切な区切り線について検証した記事|Clirea

                はじめに大規模言語モデルであるChatGPTに文章を渡す際、適切な区切り線の使用は、情報の正確な伝達や解釈に大いに役立ちます。 この記事では、区切り線に適切なものを検証します。 区切り線とは?使い方区切り線は文章を区切る時に使用する文字列のことです。 例えば下記のようなものです。 また、使い方をまとめた記事もあるので参考にしてください。 def test() a = "a" b = "b" c = a + b print(c) ================================ ←これが区切り線 上記のコードについて教えてください 結論先に結論を言うと、4個~16個連続した「-」か「=」 もしくは8の倍数の「-」か「=」が区切り線としてはベストでした。 ---- ---------------- -------------------------------- ==== ==

                  ChatGPTに渡す文章の適切な区切り線について検証した記事|Clirea
                • コーディングエージェントの能力を拡張する Serena を試してみた

                  LSP を活用してセマンティックなコード検索・編集能力を提供する MCP サーバー Serena の導入・使用方法を紹介。Claude Code でのオンボーディングからリファクタリングまでの実践的な活用例を解説します。 Serena はセマンティックなコード検索・編集能力を追加するオープンソースのツールキットです。MCP(Model Context Protocol) サーバーとして動作しているため、Claude Code や Cursor, VS Code のように MCP に対応しているクライアントであれば利用できます。またエージェントフレームワークとして Agno を使用しているため、特定の LLM モデルに依存せずに動作します。 Serena は LSP(Language Server Protocol)を使用してセマンティックなコードを解析するのが特徴です。LSP はコードの構

                    コーディングエージェントの能力を拡張する Serena を試してみた
                  • OpenAIのプロンプトジェネレーターで至高のプロンプトを生成する - Taste of Tech Topics

                    こんにちはイワツカです。 食欲の秋ということでサツマイモやキノコが美味しい季節ですね。 さて今回は、生成AIを使おうと思ってもプロンプトの書き方がよく分からず、生成AIから思ったような回答を得られない...なんて方におススメのOpenAIのプロンプトジェネレーター機能を紹介します。 1. プロンプトジェネレーターとは 使い方 2. ユースケースごとのプロンプトと結果比較 Pythonコードのリファクタリング プロンプトジェネレーターを使わない場合 プロンプトジェネレーターを使う場合 API設計 プロンプトジェネレーターを使わない場合 プロンプトジェネレーターを使う場合 ブログ作成 プロンプトジェネレーターを使わない場合 プロンプトジェネレーターを使う場合 3. まとめ 1. プロンプトジェネレーターとは プロンプトジェネレーターとは、その名の通り、AIに対する指示文(プロンプト)を自動的に

                      OpenAIのプロンプトジェネレーターで至高のプロンプトを生成する - Taste of Tech Topics
                    • PerlからGoへのシステム移行のアシスト 〜Perl XSとUnix Domain Socketを活用〜 - Mirrativ Tech Blog

                      こんにちは ハタ です。 Mirrativ では 2020年頃から サーバサイドの技術をPerlからGoへのシステム移行 を行っており、2024年現在でもサグラダファミリアのように移行作業は継続しています PerlとGoという2つの環境を同時に運用していますが、 基本的には 新機能は Go で実装 し、 Perlでは積極的に新規実装を行わない というスタイルで進めていました しかし、既存の機能の一部に手を加えたいとなった場合、まだまだ Perl の実装に手を加えることが一定あり、Perl から Go の機能を呼び出したいというニーズが出てきました (配信やギフトといったビジネスの根幹を支えるレガシーな実装においては顕著) そこで PerlXS を利用することで Perl から Go を直接呼び出せるようにできないかと考え検証を進めることにしました Goの -buildmode=c-shar

                        PerlからGoへのシステム移行のアシスト 〜Perl XSとUnix Domain Socketを活用〜 - Mirrativ Tech Blog
                      • 10時間かかっていた遺伝的アルゴリズムをAWS Lambdaで高速化 - Insight Edge Tech Blog

                        こんにちは、Insight EdgeのLead Engineerの日下です。 今回は、DEAPライブラリを利用した遺伝的アルゴリズムをAWS Lambdaで分散並列実行した話を紹介しようと思います。 目次 目次 背景と課題 並列化の方法の検討 どこを並列化するか? どのように並列化するか? 実装の方針 呼び出し側コード Lambda側コード その他 Lambdaを呼び出すためのDEAPへのmap実装 呼び出し側コード Lambda側コード 今回の実装の工夫ポイント 改善の評価 まとめ 前提 クラウド基盤: AWS 言語: Python ライブラリ: DEAP 背景と課題 ある案件で、遺伝的アルゴリズム (以下、GA)を用いた最適化処理により業務改善の実証実験をしていたところ、性能に課題があるということでデータサイエンティストチームから相談を受けました。 当該処理は、EC2 (r7g.4xl

                          10時間かかっていた遺伝的アルゴリズムをAWS Lambdaで高速化 - Insight Edge Tech Blog
                        • Announcing New Tools for Building with Generative AI on AWS | Amazon Web Services

                          Artificial Intelligence Announcing New Tools for Building with Generative AI on AWS The seeds of a machine learning (ML) paradigm shift have existed for decades, but with the ready availability of scalable compute capacity, a massive proliferation of data, and the rapid advancement of ML technologies, customers across industries are transforming their businesses. Just recently, generative AI appli

                            Announcing New Tools for Building with Generative AI on AWS | Amazon Web Services
                          • Introducing Amazon S3 Vectors: First cloud storage with native vector support at scale (preview) | Amazon Web Services

                            AWS News Blog Introducing Amazon S3 Vectors: First cloud storage with native vector support at scale (preview) Today, we’re announcing the preview of Amazon S3 Vectors, a purpose-built durable vector storage solution that can reduce the total cost of uploading, storing, and querying vectors by up to 90 percent. Amazon S3 Vectors is the first cloud object store with native support to store large ve

                              Introducing Amazon S3 Vectors: First cloud storage with native vector support at scale (preview) | Amazon Web Services
                            • GPT-5 の新パラメータとツール|npaka

                              以下の記事が面白かったので、簡単にまとめました。 ・GPT-5 New Params and Tools - OpenAI Cookbook 1. verbosity1-1. 概要「verbosity」は、出力トークン数を調節できます。 ・low : 簡潔なUX、簡潔な文章 ・medium (デフォルト) : バランスの取れた詳細 ・high : 詳細な情報。監査、教育、引き継ぎに最適 1-2. verbosityの効果の確認プロンプトを一定に保ったまま、「verbosity」を変更することで、効果を確認できます。 response = client.responses.create( model="gpt-5", input="人生、宇宙、そして万物に関する究極の問いに対する答えは何でしょうか?", text={ "verbosity": "low" } ) print(response

                                GPT-5 の新パラメータとツール|npaka
                              • プロと読み解くRuby 3.4 NEWS - STORES Product Blog

                                プロと読み解くRuby 3.4 NEWS テクノロジー部門技術基盤グループの笹田(ko1)と遠藤(mame)です。Ruby (MRI: Matz Ruby Implementation、いわゆる ruby コマンド) の開発をしています。お金をもらって Ruby を開発しているのでプロの Ruby コミッタです。 本日 12/25 に、恒例のクリスマスリリースとして、Ruby 3.4.0 がリリースされました(Ruby 3.4.0 リリース )。今年も STORES Product Blog にて Ruby 3.4 の NEWS.md ファイルの解説をします(ちなみに、STORES Advent Calendar 2024 の記事になります。他も読んでね)。NEWS ファイルとは何か、は以前の記事を見てください。 プロと読み解く Ruby 2.6 NEWS ファイル - クックパッド開発者

                                  プロと読み解くRuby 3.4 NEWS - STORES Product Blog
                                • The Prompt Engineering Playbook for Programmers

                                  Developers are increasingly relying on AI coding assistants to accelerate our daily workflows. These tools can autocomplete functions, suggest bug fixes, and even generate entire modules or MVPs. Yet, as many of us have learned, the quality of the AI’s output depends largely on the quality of the prompt you provide. In other words, prompt engineering has become an essential skill. A poorly phrased

                                    The Prompt Engineering Playbook for Programmers
                                  • コンテナランタイムを自作した - zebian.log

                                    コンテナの仕組みを勉強したかったため、Goでコンテナランタイムを自作した。雑実装だし未実装の機能もたくさんあるが、ある程度形になってきたため現状をまとめる。 リポジトリ github.com kombu/dashi - 自作コンテナランタイム kombu/nimono - eBPFを利用したシステムコールロガー kombu/yaminabe - dashiとnimonoを利用したマルウェアサンドボックス プロジェクト名から和の雰囲気を感じるが、これはリポジトリ名をkombu(昆布)にしたかったため、せっかくなら今回は和風で固めようと思ったから。趣があっていいんじゃないでしょうか。 dashiが自作コンテナランタイムだが、nimonoとyaminabeは実験的な要素で、セキュキャン2023でコンテナを使ったマルウェアサンドボックスを実装した経験があり、今回はその再実装を自作コンテナランタイム

                                      コンテナランタイムを自作した - zebian.log
                                    • GitHub - modelcontextprotocol/servers: Model Context Protocol Servers

                                      Official integrations are maintained by companies building production ready MCP servers for their platforms. 21st.dev Magic - Create crafted UI components inspired by the best 21st.dev design engineers. ActionKit by Paragon - Connect to 130+ SaaS integrations (e.g. Slack, Salesforce, Gmail) with Paragon’s ActionKit API. Adfin - The only platform you need to get paid - all payments in one place, in

                                        GitHub - modelcontextprotocol/servers: Model Context Protocol Servers
                                      • OSSベクトルDBのChromaを使ってQ&AボットをLangChainで作成する|mah_lab / 西見 公宏

                                        新興で勢いのあるベクトルDBにChromaというOSSがあり、オンメモリのベクトルDBとして気軽に試せます。 LangChainやLlamaIndexとのインテグレーションがウリのOSSですが、今回は単純にベクトルDBとして使う感じで試してみました。 データをChromaに登録する今回はLangChainのドキュメントをChromaに登録し、LangChainのQ&Aができるようなボットを作成しようと思います。 しかしLangChainのドキュメントはほとんどがJupyter Notebook形式なので、ベクトルDBへ取り込みやすいようにフラットテキストにしてあげる必要があります。 以下の関数はJupyter Notebook形式(JSON)のファイルを分解してMarkdown形式に変換し、その後Unstructured.ioのMarkdownスプリッタを利用してコンテンツをチャンクに分割

                                          OSSベクトルDBのChromaを使ってQ&AボットをLangChainで作成する|mah_lab / 西見 公宏
                                        • GitHub - bregman-arie/devops-exercises: Linux, Jenkins, AWS, SRE, Prometheus, Docker, Python, Ansible, Git, Kubernetes, Terraform, OpenStack, SQL, NoSQL, Azure, GCP, DNS, Elastic, Network, Virtualization. DevOps Interview Questions

                                          In general, what do you need in order to communicate? A common language (for the two ends to understand) A way to address who you want to communicate with A Connection (so the content of the communication can reach the recipients) What is TCP/IP? A set of protocols that define how two or more devices can communicate with each other. To learn more about TCP/IP, read here What is Ethernet? Ethernet

                                            GitHub - bregman-arie/devops-exercises: Linux, Jenkins, AWS, SRE, Prometheus, Docker, Python, Ansible, Git, Kubernetes, Terraform, OpenStack, SQL, NoSQL, Azure, GCP, DNS, Elastic, Network, Virtualization. DevOps Interview Questions
                                          • GitHub - gristlabs/grist-core: Grist is the evolution of spreadsheets.

                                            Grist is a modern relational spreadsheet. It combines the flexibility of a spreadsheet with the robustness of a database. grist-core (this repo) has what you need to run a powerful server for hosting spreadsheets. grist-desktop is a Linux/macOS/Windows desktop app for viewing and editing spreadsheets stored locally. grist-static is a fully in-browser build of Grist for displaying spreadsheets on a

                                              GitHub - gristlabs/grist-core: Grist is the evolution of spreadsheets.
                                            • MCP Python SDK のドキュメント|npaka

                                              以下の記事が面白かったので、簡単にまとめました。 ・modelcontextprotocol/python-sdk 1. 概要「MCP」を使用すると、アプリケーションは標準化された方法でLLMにコンテキストを提供できます。これにより、コンテキストの提供とLLMとの実際のやり取りを分離できます。「Python SDK」はMCP仕様を完全に実装しており、以下のことが容易になります。 ・任意のMCPサーバに接続できるMCPクライアントの構築 ・リソース、プロンプト、ツールを公開するMCPサーバの作成 ・stdio、SSE、Streamable HTTPなどの標準トランスポートの使用 ・すべてのMCPプロトコルメッセージとライフサイクルイベントの処理 2. インストール2-1. PythonプロジェクトにMCPを追加Pythonプロジェクトの管理には「uv」が推奨されています。 (1) プロジェク

                                                MCP Python SDK のドキュメント|npaka
                                              • How I Hacked my Car

                                                Note: As of 2022/10/25 the information in this series is slightly outdated. See Part 5 for more up to date information. The Car⌗ Last summer I bought a 2021 Hyundai Ioniq SEL. It is a nice fuel-efficient hybrid with a decent amount of features like wireless Android Auto/Apple CarPlay, wireless phone charging, heated seats, & a sunroof. One thing I particularly liked about this vehicle was the In-V

                                                • 【ChatGPT】GPT-4でPythonの画像ビューワを作成してみた | DevelopersIO

                                                  新規事業統括部の山本です。 今日OpenAIのChatGPTのモデルとして、GPT-4が利用可能になりました。早速使ってみようと思います。 やってみる 今回は画像のビューワを作成してみます。ちょうどデータセットの画像や、画像モデルに入力した結果を表示するツールがほしいと思っていました。 import os import tkinter as tk from tkinter import filedialog from PIL import Image, ImageTk def browse_folder(): folder_path = filedialog.askdirectory() if not folder_path: return images_frame.delete("all") load_images(folder_path) def load_images(folder_

                                                    【ChatGPT】GPT-4でPythonの画像ビューワを作成してみた | DevelopersIO
                                                  • データカタログにNotionを選択した理由

                                                    実装方法 冪等性を担保したGoogle Cloud Composerの設計と実装で紹介しているとおり、Luupのデータ基盤はGoogle Cloud Composerを軸に動いています。なので今回も、Google Cloud Composerの環境下に作りました。 アウトプットイメージは以下です。 以下のNotion APIのDocumentを参考に実装を進めていきます。 サンプルコードも豊富で、説明も丁寧なので簡単に実装できました。 以下、コード一例です。 # Notionのフォーマットに変換するメソッド def format_standard_property_value(self, property_name: str, value: str): if property_name == "title": return {"title": [{"text": {"content": v

                                                      データカタログにNotionを選択した理由
                                                    • さらなる進化を遂げた「uv」の新機能 | gihyo.jp

                                                      福田(@JunyaFff)です。本連載Python Monthly Topicsで2024年3月に公開したRust製のPythonパッケージ管理ツール「uv」を使ってみよう で紹介した「uv」が、さらなる進化を遂げました。今回は、その新機能を紹介します。 はじめに Astral社が開発するRust製の高速なpipの代替ツール「uv」がパッケージマネージャーとして8月にアップデートされました。pipの代替ツールとしてだけでなく、Pythonプロジェクト、コマンドラインツール、単一ファイルスクリプトさらにPython自体を管理できるようになりました。uvは、pipやpipx、venv、poetryやpyenvのような機能を包括していると言え、そしてそのすべてが非常に高速に動作します。 本記事では、アップデートした「uv」の新機能を中心に紹介します。 基本的な使い方は Rust製のPythonパ

                                                        さらなる進化を遂げた「uv」の新機能 | gihyo.jp
                                                      • Introducing Ezno

                                                        Ezno is an experimental compiler I have been working on and off for a while. In short, it is a JavaScript compiler featuring checking, correctness and performance for building full-stack (rendering on the client and server) websites. This post is just an overview of some of the features I have been working on which I think are quite cool as well an overview on the project philosophy ;) It is still

                                                          Introducing Ezno
                                                        • 【Python 3.12】型ヒント機能がいつの間にか進化していたので、慌ててキャッチアップする - ABEJA Tech Blog

                                                          ABEJA でプロダクト開発を行っている平原です。 先日、バックエンドで使っているGo言語のお勉強しようと「go言語 100Tips ありがちなミスを把握し、実装を最適化する」を読んでいました。その中でinterfaceは(パッケージを公開する側ではなく)受け側で定義するべきという記述を見つけてPythonでも同じことできないかと調べていると(PythonではProtocolを使うとうまくいきそうです。)、どうやら型ヒント機能がかなりアップデートされていることに気づき慌てて再入門しました。(3.7, 3.8あたりで止まってました。。) この記事では、公式ドキュメントを見ながら適当にコードを書き散らし、どの機能はどこまで使えるのか試してみたことをまとめてみました。 docs.python.org 環境 Python: 3.12.1 エディタ: Visual Studio Code Pylan

                                                            【Python 3.12】型ヒント機能がいつの間にか進化していたので、慌ててキャッチアップする - ABEJA Tech Blog
                                                          • Google ColabとVSCodeを用いた分析環境運用方法 〜kaggle Tipsを添えて〜 - ギークなエンジニアを目指す男

                                                            こんにちは。takapy(@takapy0210)です。 本エントリは下記イベントでLTした内容の元に、補足事項やコードスニペットなどをまとめたものになります。 kaggle-friends.connpass.com ちなみに今回LTしようと思ったきっかけは以下のような出来事からだったので、みなさんのTipsなども教えていただけると嬉しいです! 情報出回ってる感あるけど、colab pro × vscode ssh のオレオレ運用方法を晒すことにより、もっと良い方法のフィードバックもらえるのではドリブンでLTするのはありなのかもしれない・・・?— takapy | たかぱい (@takapy0210) 2021年8月1日 LT資料 当日みなさんから頂いたコメント 環境構築手順 ngrokアカウント作成と認証キーの取得 ColabにGoogleドライブを接続、ngrok、sshサーバー起動

                                                              Google ColabとVSCodeを用いた分析環境運用方法 〜kaggle Tipsを添えて〜 - ギークなエンジニアを目指す男
                                                            • ソースコード & ドキュメントに対応したGraph RAGの実装(Tree-sitter + LightRAG)

                                                              (module (function_definition (identifier) # ← ここに関数名「sample_func」が含まれます (parameters) (block (expression_statement (call (identifier) (argument_list (string)))))) (expression_statement (call (identifier) (argument_list)))) ノードが色々取れましたが、「function_definition」が関数、その子である「identifier」が関数名を表すため、 function_definition == 子ノード ==> identifier となっている箇所を探索すれば抽出できます(関数ではあっても「lambda」など異なる場合もあります)。 今回は上記のようにTree-si

                                                                ソースコード & ドキュメントに対応したGraph RAGの実装(Tree-sitter + LightRAG)
                                                              • PacketProxyで探るGemini CLIのコンテキストエンジニアリング 〜AIエージェントを信頼できる相棒に〜 | BLOG - DeNA Engineering

                                                                2025.07.18 技術記事 PacketProxyで探るGemini CLIのコンテキストエンジニアリング 〜AIエージェントを信頼できる相棒に〜 by akira.kuroiwa #gemini-cli #ai #security #aiエージェント #コンテキストエンジニアリング #packetproxy 「なんかよく分からないけど、すごい」で終わらせないために こんにちは、DeNA セキュリティ技術グループの 黒岩 亮 ( @kakira9618 ) です。 AIエージェント、とくに Gemini CLI のようなコーディングを支援してくれるツールは非常に強力で、私たちの開発体験を大きく変えようとしています。しかし、その一方で、こんな風に感じたことはありませんか? 「このファイルの情報、勝手にAIに送られたりしない? 大丈夫かな?」 と、情報管理・セキュリティ面で漠然とした不安を

                                                                  PacketProxyで探るGemini CLIのコンテキストエンジニアリング 〜AIエージェントを信頼できる相棒に〜 | BLOG - DeNA Engineering
                                                                • Introducing Amazon MemoryDB for Redis – A Redis-Compatible, Durable, In-Memory Database Service | Amazon Web Services

                                                                  AWS News Blog Introducing Amazon MemoryDB for Redis – A Redis-Compatible, Durable, In-Memory Database Service Interactive applications need to process requests and respond very quickly, and this requirement extends to all the components of their architecture. That is even more important when you adopt microservices and your architecture is composed of many small independent services that communica

                                                                    Introducing Amazon MemoryDB for Redis – A Redis-Compatible, Durable, In-Memory Database Service | Amazon Web Services
                                                                  • 2025年、それはスクワットの時代 🏋️ - マンガ〜ノ伊藤ノ〜ト

                                                                    この記事は「はてなエンジニア Advent Calendar 2024 - Hatena Developer Blog」の 41 日目の記事です。昨日は id:masayosu さんの「AWS EKS Automode のノード管理について」でした。 はてなのマンガアプリチームで Android エンジニアをやっている id:mangano-ito です。 スクワット最強説 スクワットは筋トレの中でもオススメらしいのです。 理屈はよくわかってないけど、筋トレやるならスクワットがオススメだよみたいなことはよくきくと思います: diamond.jp ので、自分は風呂前や風呂中に気休め程度にスクワットをやっている。たまに変な腹筋もやっていますが…自分のヘソを見つめるやつ。 www.nisshin.com それはさておき、スクワットのいいところとしましては、映像をみながらやりやすいということです。

                                                                      2025年、それはスクワットの時代 🏋️ - マンガ〜ノ伊藤ノ〜ト
                                                                    • the peculiar case of japanese web design - sabrinas.space

                                                                      the peculiar case of japanese web design a project that should not have taken 8 weeks how is japanese web design different? in this 2013 Randomwire blog post, the author (David) highlighted an intriguing discrepancy in Japanese design. While the nation is known abroad for minimalist lifestyles, their websites are oddly maximalist. The pages feature a variety of bright colours (breaking the 3 colou

                                                                      • 自社プロダクトのデータ基盤における BigQuery SQLテストシステムについて - Platinum Data Blog by BrainPad

                                                                        「データ活用をより多くの人が、より効率的に実施できるようになる取り組み」をエンジニア観点から自発的に実施するカルチャーを持つ、自社開発プロダクト「Rtoaster(アールトースター)」のエンジニアチーム。今回は、データ基盤チームで作成した BigQuery でのテストシステムを紹介します! こんにちは、プロダクトビジネス本部開発部の柴内(データ基盤チーム)です。今回は、自社製品である「Rtoaster」プロダクトのデータ基盤チームで作成した BigQuery でのテストシステムについてご紹介します。 背景 データ基盤チームでは、 Rtoaster製品からリアルタイムに連携される、WebやアプリのトラッキングといったデータをGCSや BigQuery に蓄積するデータレイク データレイクにあるデータを BigQuery で加工・変換して利用しやすい形式にしたデータマートやデータウェアハウス

                                                                          自社プロダクトのデータ基盤における BigQuery SQLテストシステムについて - Platinum Data Blog by BrainPad
                                                                        • ChatGPT時代に必要かも!? Pythonで実行するファイルパース(PDF編) | DevelopersIO

                                                                          こんちには。 データアナリティクス事業本部 インテグレーション部 機械学習チームの中村です。 今回は話題のChatGPTにコンテキストを与える際に必要となるファイルパース処理について見ていきたいと思います。 本記事ではPDFに焦点を絞ってみていきます。既存のライブラリ内の実装も確認していきます。 先行事例の実装 先行事例の実装として、よく話題となる以下のライブラリを見ていきます。 (LlamaIndexとLlamaHubはほぼ同じですが、parserとしては片方にしかないものもあるため) LlamaIndex https://github.com/jerryjliu/llama_index https://gpt-index.readthedocs.io/en/latest/index.html LlamaHub https://github.com/emptycrown/llama-hu

                                                                            ChatGPT時代に必要かも!? Pythonで実行するファイルパース(PDF編) | DevelopersIO
                                                                          • Stanで動かすベイズ的機械学習 ~医療費データの分析例~ - ENGINEERING BLOG ドコモ開発者ブログ

                                                                            本記事は、ドコモアドベントカレンダー2024 19日目の記事です🎄 こんにちは!NTTドコモ クロステック開発部の畑元です。業務ではヘルスケア領域におけるデータ分析やAI開発を行っています。 この記事ではベイズ推論による機械学習とRStanを用いた分析例をご紹介します。データサイエンス分野の方には馴染みのある話かもしれませんが、私はよく忘れてしまうので頭の整理も兼ねて書いていこうと思います。 ※数式が崩れる方は、数式の上で右クリックして、Math Settings > Math Renderer > Common HTMLへ設定をご変更ください 1. はじめに 2. ベイズ推論について ベイズの定理 ベイズ推論 ベイズ的機械学習 3. 実際に動かしてみる 準備 探索的データ分析 ベイズ線形回帰 階層モデル 4. おわりに 参考書籍 1. はじめに 近年、AIに関する研究は急速に進歩し、あ

                                                                              Stanで動かすベイズ的機械学習 ~医療費データの分析例~ - ENGINEERING BLOG ドコモ開発者ブログ
                                                                            • The Scary Thing About Automating Deploys - Engineering at Slack

                                                                              Most of Slack runs on a monolithic service simply called “The Webapp”. It’s big – hundreds of developers create hundreds of changes every week. Deploying at this scale is a unique challenge. When people talk about continuous deployment, they’re often thinking about deploying to systems as soon as changes are ready. They talk about microservices and 2-pizza teams (~8 people). But what does continuo

                                                                              • LangGraph を用いた LLM エージェント、Plan-and-Execute Agents の実装解説 - Algomatic Tech Blog

                                                                                はじめに こんにちは。Algomatic LLM STUDIO 機械学習エンジニアの宮脇(@catshun_)です。 Wang+’23 - A Survey on Large Language Model Based Autonomous Agents ChatGPT が発表されてからおよそ 1 年が経ち、AutoGPT, BabyAGI, HuggingGPT, Generative Agents, ChatDev, Mind2Web, Voyager, MetaGPT, Self-Recovery Prompting, OpenCodeInterpreter, AutoAgents などなど、大規模言語モデル (LLM) の抱負な知識および高度な推論能力を活用した LLM エージェント (AIエージェント) が発表されています。 直近ではコード生成からデバッグ、デプロイまで自律的に行う

                                                                                  LangGraph を用いた LLM エージェント、Plan-and-Execute Agents の実装解説 - Algomatic Tech Blog
                                                                                • What We Learned from a Year of Building with LLMs (Part I)

                                                                                  It’s an exciting time to build with large language models (LLMs). Over the past year, LLMs have become “good enough” for real-world applications. The pace of improvements in LLMs, coupled with a parade of demos on social media, will fuel an estimated $200B investment in AI by 2025. LLMs are also broadly accessible, allowing everyone, not just ML engineers and scientists, to build intelligence into

                                                                                    What We Learned from a Year of Building with LLMs (Part I)