並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 240件

新着順 人気順

python if input containsの検索結果1 - 40 件 / 240件

  • OpenInterpreter / ついにAIがガチのアシスタントに!これは凄い、というか凄すぎる|shi3z

    凄いものが出てきてしまった。 ChatGPTの「Code Interpreter」が話題になったが、あれはあくまでクラウド上で動いているだけ。それを模してローカルで動作するようになった「Open Interpreter」は、衝撃的な成果である。 Open Interpreterのインストールは簡単。コマンド一発だ $ pip install open-interpreter起動も簡単 $ interpreter -yこれだけでOK。 あとはなんでもやってくれる。 たとえばどんなことができるのかというと、「AppleとMetaの株価の推移をグラフ化してくれ」と言うとネットから自動的に情報をとってきてPythonコード書いてグラフをプロットしてくれる。 凄いのは、ローカルで動くのでたとえばApplescriptを使ってmacOSで動いているアプリを直接起動したり操作したりできる。「Keynot

      OpenInterpreter / ついにAIがガチのアシスタントに!これは凄い、というか凄すぎる|shi3z
    • Command Line Interface Guidelines

      Contents Command Line Interface Guidelines An open-source guide to help you write better command-line programs, taking traditional UNIX principles and updating them for the modern day. Authors Aanand Prasad Engineer at Squarespace, co-creator of Docker Compose. @aanandprasad Ben Firshman Co-creator Replicate, co-creator of Docker Compose. @bfirsh Carl Tashian Offroad Engineer at Smallstep, first e

        Command Line Interface Guidelines
      • MCPでLLMに行動させる - Terraformを例とした tfmcp の紹介 - じゃあ、おうちで学べる

        はじめに こんにちは!今回は、私が最近開発した tfmcp というツールを紹介します。これは Terraform を LLM(大規模言語モデル)から操作できるようにするツールで、Model Context Protocol (MCP) を活用しています。 github.com このブログが良ければ読者になったり、GitHub リポジトリにStarをいただけると開発の励みになります。nwiizoをフォロワーしてくれるのもありがたいです。より良いツール開発のためのフィードバックもお待ちしています! MCP とは何か? 記事を始める前に、まず MCP (Model Context Protocol) について簡単に説明しましょう。MCP についてより詳しい情報は、公式ドキュメント modelcontextprotocol.io や Anthropic の Model Context Protoc

          MCPでLLMに行動させる - Terraformを例とした tfmcp の紹介 - じゃあ、おうちで学べる
        • 関数名、メソッド名、変数名でよく使う英単語のまとめ

          プログラミングをしていると関数名、メソッド名、変数名をどうするか悩みます。 ロジックより命名に時間を費やすこともざらにあります。翻訳したり、一般的な命名規則なのかいつも検索して大変です。 よく使うサイトの内容をコピってメモしておく 関数名とメソッド名の違いについて よく使う英単語のまえに、いつもごっちゃにして使っているけど、定義はこんな感じ 「関数」と「メソッド」の違い 似ているところ どちらも何か(引数)を入れると処理をして何か(戻り値)を返してくれます。 違うところ やってること自体は大差ありません。概念としては違います。 メソッドはオブジェクト指向で登場する用語で、オブジェクトの動作を定義したものです。 まずオブジェクトありきなのですね。一方の関数は、オブジェクト云々は関係ありません。 個人的な使い分け Java で登場する関数は「メソッド」です。C 言語で登場する関数は「関数」と呼

            関数名、メソッド名、変数名でよく使う英単語のまとめ
          • 敵対的プロンプト技術まとめ - Qiita

            こんにちは@fuyu_quantです。 この記事はLLM Advent Calender 2023 17日目の記事です。 よかったらプライベートで作成したData Science wikiのGPTsも見て下さい! はじめに 今回は敵対的なプロンプト技術についてまとめました.まとめ方は主に,Ignore This Title and HackAPrompt: Exposing Systemic Vulnerabilities of LLMs through a Global Scale Prompt Hacking Competition というLLMに対する敵対的なプロンプト技術に関してまとめた論文を参考にしています.本記事の内容が世の中のLLMを使ったサービスの機能向上の役に立てれば幸いです. ※世の中のLLMサービスが敵対的なプロンプト手法に対応できるように公開をしたものであり,利用を

              敵対的プロンプト技術まとめ - Qiita
            • OpenAI API ドキュメント 日本語訳|#2 GET STARTED 後編|ゑぐみかるちゃあ

              OpenAI API ドキュメントの日本語訳をこちらでまとめます。文字量の多いドキュメントなので、セクションごとに記事を分割しています。 今回は「GET STARTED 」のセクションからLibraries 、Models、TutorialsそしてUsage policiesを抜粋した後編です。 基本 DeepLで翻訳して、気になるところだけ書き換えています(ほぼ気になるところがないのが、DeepLのすごいところ)。原文との突き合わせができるようにはじめに原文を入れてますので、間違いなど見つけられましたら、ぜひご指摘ください。ご指摘箇所は随時反映させていただきます。 原文のリンクが有効になってますので、それぞれ必要な場合は原文リンクの方を参照ください。 前回のおさらいはこちら Python library|Python ライブラリWe provide a Python library, w

                OpenAI API ドキュメント 日本語訳|#2 GET STARTED 後編|ゑぐみかるちゃあ
              • OpenAIのBatch APIを使ってお得にプロンプトを一括処理してみる - Taste of Tech Topics

                はじめに こんにちは。データサイエンスチームYAMALEXのSsk1029Takashiです。 最近はOpenAIに日本支社が出来て、日本語対応が加速するというニュースにわくわくしています。 今回はそんなOpenAIから発表されたBatch APIという機能が便利、かつお得な機能だったのでどのように使えるのか試してみます。 Introducing the Batch API: save costs and get higher rate limits on async tasks (such as summarization, translation, and image classification). Just upload a file of bulk requests, receive results within 24 hours, and get 50% off API pri

                  OpenAIのBatch APIを使ってお得にプロンプトを一括処理してみる - Taste of Tech Topics
                • Microsoft Power Automate DesktopでRPAを実現してみる | 🌴 officeの杜 🥥

                  自分自身の個人的意見としては、エンドユーザコンピューティングは大いに結構だと思ってるけれど、一方で日本でジリジリと熱さが消えつつある国内の有象無象のRPAについては滅んだほうが良いとも思ってる。理由は後述するとして、本日良いニュースが発表されました。Power Automate Desktopについて追加費用無し無償で利用可能になるとのこと。これは既にあるMicrosoft365のEnterpriseプランなどに標準で利用できてるPower Automateのデスクトップ版のようで、Windows10に標準でついてくるようになるとのこと。 ということで、現時点のMicrosoft365で使えてるPower Automate Desktopを使ってみて、どんな感じなのか?またリリース後にその違いなどをここに記述していこうかなと思っています。また、Seleniumベースのウェブ自動化についても

                    Microsoft Power Automate DesktopでRPAを実現してみる | 🌴 officeの杜 🥥
                  • act: GitHub Actions のワークフローをローカル環境で実行する - kakakakakku blog

                    GitHub Actions でワークフローを実行するときに git commit と git push を実行して GitHub Actions の実行を待つことがよくある.より迅速に実行して,結果を受け取るために「act」を使って GitHub Actions をローカル環境(コンテナ)で実行する仕組みを試してみた.便利だったので紹介しようと思う❗️ 当然ながら GitHub Actions を完全再現できてるわけではなく,最終的には GitHub Actions を使うことにはなるけど,特に開発中に頻繁にテストを実行できるのはメリットだと思う.うまく併用しながら開発体験を高めよう👌 github.com セットアップ macOS の場合は Homebrew を使って簡単にセットアップできる.他には Chocolatey (Windows) や Bash script も選べる.今回

                      act: GitHub Actions のワークフローをローカル環境で実行する - kakakakakku blog
                    • Announcing New Tools for Building with Generative AI on AWS | Amazon Web Services

                      Artificial Intelligence Announcing New Tools for Building with Generative AI on AWS The seeds of a machine learning (ML) paradigm shift have existed for decades, but with the ready availability of scalable compute capacity, a massive proliferation of data, and the rapid advancement of ML technologies, customers across industries are transforming their businesses. Just recently, generative AI appli

                        Announcing New Tools for Building with Generative AI on AWS | Amazon Web Services
                      • プロと読み解くRuby 3.4 NEWS - STORES Product Blog

                        プロと読み解くRuby 3.4 NEWS テクノロジー部門技術基盤グループの笹田(ko1)と遠藤(mame)です。Ruby (MRI: Matz Ruby Implementation、いわゆる ruby コマンド) の開発をしています。お金をもらって Ruby を開発しているのでプロの Ruby コミッタです。 本日 12/25 に、恒例のクリスマスリリースとして、Ruby 3.4.0 がリリースされました(Ruby 3.4.0 リリース )。今年も STORES Product Blog にて Ruby 3.4 の NEWS.md ファイルの解説をします(ちなみに、STORES Advent Calendar 2024 の記事になります。他も読んでね)。NEWS ファイルとは何か、は以前の記事を見てください。 プロと読み解く Ruby 2.6 NEWS ファイル - クックパッド開発者

                          プロと読み解くRuby 3.4 NEWS - STORES Product Blog
                        • research!rsc: Coroutines for Go

                          This post is about why we need a coroutine package for Go, and what it would look like. But first, what are coroutines? Every programmer today is familiar with function calls (subroutines): F calls G, which stops F and runs G. G does its work, potentially calling and waiting for other functions, and eventually returns. When G returns, G is gone and F continues running. In this pattern, only one fu

                          • NETGEAR社製ルーターにおける認証不要の任意コード実行の技術的解説(PSV-2022-0044) - GMO Flatt Security Blog

                            ※本記事は先立って公開された英語版記事を翻訳し、日本語圏の読者向けに一部改変したものです。 画像出典: https://www.netgear.com/business/wifi/access-points/wac124/ はじめに こんにちは、株式会社Flatt Securityのstypr(@stereotype32)です。 一昨年、日本のOSS製品で発見された0day脆弱性に関する技術解説をブログに書きました。 それ以来、私は様々な製品に多くの脆弱性を発見してきました。残念ながら私が見つけたバグのほとんどはすぐに修正されなかったので、今日まで私が見つけた、技術的に興味深い脆弱性の情報を共有する機会がありませんでした。 本記事では、NETGEAR社のWAC124(AC2000)ルーターにおいて、様々な脆弱性を発見し、いくつかの脆弱性を連鎖させて、前提条件なしに未認証ユーザーの立場からコ

                              NETGEAR社製ルーターにおける認証不要の任意コード実行の技術的解説(PSV-2022-0044) - GMO Flatt Security Blog
                            • GPT in 60 Lines of NumPy | Jay Mody

                              January 30, 2023 In this post, we'll implement a GPT from scratch in just 60 lines of numpy. We'll then load the trained GPT-2 model weights released by OpenAI into our implementation and generate some text. Note: This post assumes familiarity with Python, NumPy, and some basic experience with neural networks. This implementation is for educational purposes, so it's missing lots of features/improv

                              • Amazon Linux 2023がGAされました | DevelopersIO

                                抜粋 : Release cadence - Amazon Linux 2023 メジャーリリースとマイナーリリースの内容は以下AWS公式ドキュメントに記載されています。メジャーリリース時には互換性があるか十分に検証した上でアップデートしましょう。 Major version release— Includes new features and improvements in security and performance across the stack. The improvements might include major changes to the kernel, toolchain, Glib C, OpenSSL, and any other system libraries and utilities. Major releases of Amazon Linux ar

                                  Amazon Linux 2023がGAされました | DevelopersIO
                                • Making JavaScript run fast on WebAssembly - Bytecode Alliance

                                  JavaScript in the browser runs many times faster than it did two decades ago. And that happened because the browser vendors spent that time working on intensive performance optimizations. Today, we’re starting work on optimizing JavaScript performance for entirely different environments, where different rules apply. And this is possible because of WebAssembly. We should be clear here—if you’re run

                                    Making JavaScript run fast on WebAssembly - Bytecode Alliance
                                  • PyTorch vs TensorFlow in 2023

                                    PyTorch and TensorFlow are far and away the two most popular Deep Learning frameworks today. The debate over which framework is superior is a longstanding point of contentious debate, with each camp having its share of fervent supporters. Both PyTorch and TensorFlow have developed so quickly over their relatively short lifetimes that the debate landscape is ever-evolving. Outdated or incomplete in

                                    • 【技術選定/OSS編】LLMプロダクト開発にLangSmithを使って評価と実験を効率化した話 - Gaudiy Tech Blog

                                      こんにちは。ファンと共に時代を進める、Web3スタートアップ Gaudiy の seya (@sekikazu01)と申します。 この度 Gaudiy では LangSmith を使った評価の体験をいい感じにするライブラリ、langsmith-evaluation-helper を公開しました。 github.com 大まかな機能としては次のように config と、詳細は後で載せますが、LLMを実行する関数 or プロンプトテンプレートと評価を実行する関数を書いて description: Testing evaluations prompt: entry_function: toxic_example_prompts providers: - id: TURBO config: temperature: 0.7 - id: GEMINI_PRO config: temperature:

                                        【技術選定/OSS編】LLMプロダクト開発にLangSmithを使って評価と実験を効率化した話 - Gaudiy Tech Blog
                                      • Writing a C compiler in 500 lines of Python

                                        A few months ago, I set myself the challenge of writing a C compiler in 500 lines of Python1, after writing my SDF donut post. How hard could it be? The answer was, pretty hard, even when dropping quite a few features. But it was also pretty interesting, and the result is surprisingly functional and not too hard to understand! There's too much code for me to comprehensively cover in a single blog

                                        • Introducing Amazon S3 Object Lambda – Use Your Code to Process Data as It Is Being Retrieved from S3 | Amazon Web Services

                                          AWS News Blog Introducing Amazon S3 Object Lambda – Use Your Code to Process Data as It Is Being Retrieved from S3 March 15, 2023 – You can now use S3 Object Lambda with Amazon CloudFront to tailor content for end users. August 13, 2024 – Added a note clarifying that, when following the walkthrough, you should not mark the Specify Lambda function version option that was added after this post was p

                                            Introducing Amazon S3 Object Lambda – Use Your Code to Process Data as It Is Being Retrieved from S3 | Amazon Web Services
                                          • How does Google Authenticator work? (Part 1)

                                            This post is the first in a three-part series. The remaining two: How does Google Authenticator work? (Part 2) How does Google Authenticator work? (Part 3) When you’re accessing services over the WEB – let’s pick GMail as an example – a couple of things have to happen upfront: The server you’re connecting to (GMail in our example) has to get to know who you are. Only after getting to know who you

                                            • Replit — How to train your own Large Language Models

                                              Learn how Replit trains Large Language Models (LLMs) using Databricks, Hugging Face, and MosaicML IntroductionLarge Language Models, like OpenAI's GPT-4 or Google's PaLM, have taken the world of artificial intelligence by storm. Yet most companies don't currently have the ability to train these models, and are completely reliant on only a handful of large tech firms as providers of the technology.

                                                Replit — How to train your own Large Language Models
                                              • LogLog Games

                                                The article is also available in Chinese. Disclaimer: This post is a very long collection of thoughts and problems I've had over the years, and also addresses some of the arguments I've been repeatedly told. This post expresses my opinion the has been formed over using Rust for gamedev for many thousands of hours over many years, and multiple finished games. This isn't meant to brag or indicate su

                                                • Lessons from Writing a Compiler

                                                  The prototypical compilers textbook is: 600 pages on parsing theory. Three pages of type-checking a first-order type system like C. Zero pages on storing and checking the correctness of declarations (the “symbol table”). Zero pages on the compilation model, and efficiently implementing separate compilation. 450 pages on optimization and code generation. The standard academic literature is most use

                                                  • MCP Security Notification: Tool Poisoning Attacks

                                                    We have discovered a critical vulnerability in the Model Context Protocol (MCP) that allows for "Tool Poisoning Attacks." Many major providers such as Anthropic and OpenAI, workflow automation systems like Zapier and MCP clients like Cursor are susceptible to this attack. Concerned about MCP and agent security? Sign up for early access to Invariant Guardrails, our security platform for agentic AI

                                                      MCP Security Notification: Tool Poisoning Attacks
                                                    • Sublime Text 4

                                                      The first stable release of Sublime Text 4 has finally arrived! We've worked hard on providing improvements without losing focus on what makes Sublime Text great. There are some new major features that we hope will significantly improve your workflow and a countless number of minor improvements across the board. A huge thanks goes out to all the beta testers on discord and all the contributors to

                                                        Sublime Text 4
                                                      • Joining CSV and JSON data with an in-memory SQLite database

                                                        19th June 2021 The new sqlite-utils memory command can import CSV and JSON data directly into an in-memory SQLite database, combine and query it using SQL and output the results as CSV, JSON or various other formats of plain text tables. sqlite-utils memory The new feature is part of sqlite-utils 3.10, which I released this morning. You can install it using brew install sqlite-utils or pip install

                                                          Joining CSV and JSON data with an in-memory SQLite database
                                                        • メルカリでのDetection EngineeringとSOAR | メルカリエンジニアリング

                                                          ※本記事は2022年5月13日に公開された記事の翻訳版です。 ※この記事はSecurity Tech Blogシリーズ: Spring Cleaning for Securityの一環で書かれています。 こんにちは。Security EngineeringチームのDavidです。 この記事では、メルカリが独自に実施しているSOC(セキュリティオペレーションセンター)の取り組みを紹介します。少しでも読者の脅威検出の取り組みをスタートするきっかけになれたらと思っています。 はじめに 一般的に、サイバーセキュリティは、防止(Prevention)、検出(Detection)、対応(Response)の3つの主要原則に分類されます。最近のブログ投稿やオンライン登壇では、SecurityチームとMicroservice Platformチームが主にセキュリティの防止の側面 [1] について触れてきま

                                                            メルカリでのDetection EngineeringとSOAR | メルカリエンジニアリング
                                                          • What We Learned from a Year of Building with LLMs (Part I)

                                                            It’s an exciting time to build with large language models (LLMs). Over the past year, LLMs have become “good enough” for real-world applications. The pace of improvements in LLMs, coupled with a parade of demos on social media, will fuel an estimated $200B investment in AI by 2025. LLMs are also broadly accessible, allowing everyone, not just ML engineers and scientists, to build intelligence into

                                                              What We Learned from a Year of Building with LLMs (Part I)
                                                            • Context is all you need: Better AI results with custom instructions

                                                              Context is all you need: Better AI results with custom instructions March 26, 2025 by Rob Conery, @robconery.com, Burke Holland, @burkeholland Earlier this month, we announced the general availability of custom instructions in Visual Studio Code. Custom instructions are how you give Copilot specific context about your team's workflow, your particular style preferences, libraries the model may not

                                                                Context is all you need: Better AI results with custom instructions
                                                              • 複数の AWS アカウントの AWS Security Hub 検出結果を Google BigQuery と Google DataPortal(DataStudio) により可視化した話 - Adwaysエンジニアブログ

                                                                こんにちは、インフラの天津です。今日は 複数アカウントの AWS Security Hub 検出結果の可視化についてお話したいと思います。 前提 モチベーション AWS Security Hub とは 構想 ツール・サービスの選定 検出結果データのエクスポートについて 可視化用データベース(またはクエリサービス)と可視化ツールについて 構築 全体像 検出結果データエクスポート 検出結果データの S3 -> GCS への転送と BigQuery へのインポート Security Hub からエクスポートしたデータには BigQuery のカラム名に使用できない文字(以下禁則文字)が使用されている件 自動判別で生成されたスキーマでインポートした際に INTEGER 型のカラムに STRING 型のデータが入ってくることがありインポートエラーが発生する件 AWS アカウントデータの S3 ->

                                                                  複数の AWS アカウントの AWS Security Hub 検出結果を Google BigQuery と Google DataPortal(DataStudio) により可視化した話 - Adwaysエンジニアブログ
                                                                • 投資家IPランドスケープ・スタートアップ支援IPランドスケープ・大学支援用に改良中 更新中)tfidf etc embeddings cluster reconstructing vis: 特許など長文の、動的な文章間類似俯瞰図可視化・迅速閲覧・解析・探索手段。および第三の特許検索手法、動的な知識抽出管理手法、特許自動生成 (類似度ベクトルと小規模言語モデル及びChatGPTを用いた空白領域における特許生成追加) - Qiita

                                                                  Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 投資家IPランドスケープ・スタートアップ支援IPランドスケープ・大学支援用に改良中 更新中)tfidf etc embeddings cluster reconstructing vis: 特許など長文の、動的な文章間類似俯瞰図可視化・迅速閲覧・解析・探索手段。および第三の特許検索手法、動的な知識抽出管理手法、特許自動生成 (類似度ベクトルと小規模言語モデル及びChatGPTを用いた空白領域における特許生成追加)自然言語処理NLP可視化Visualization特許 これは何 複数の特許等の文章を「特定の母集団における互いの類似度」を元

                                                                    投資家IPランドスケープ・スタートアップ支援IPランドスケープ・大学支援用に改良中 更新中)tfidf etc embeddings cluster reconstructing vis: 特許など長文の、動的な文章間類似俯瞰図可視化・迅速閲覧・解析・探索手段。および第三の特許検索手法、動的な知識抽出管理手法、特許自動生成 (類似度ベクトルと小規模言語モデル及びChatGPTを用いた空白領域における特許生成追加) - Qiita
                                                                  • 缶つぶし機とソフトウェア移行技術 - Refactoring to Rust の読書感想文 - じゃあ、おうちで学べる

                                                                    はじめに ——あるいは、「知っている」と「理解している」の間 Rustのことは、知っていた。学習もしていた。実務でも使っていた。 でも、それは知っているつもりだった。 知ってるつもり 無知の科学 (ハヤカワ文庫NF) 作者:スティーブン スローマン,フィリップ ファーンバック早川書房Amazon 日々Rustで開発し、BoxとRcとArcを使い分け、tokio::spawnでタスクを生成し、?演算子を当たり前のように書いている。FFI?PyO3使えばいいでしょ。WebAssembly?wasm-bindgenがあるじゃない。技術的には、確かに「使える」レベルにはあった。 でも、心のどこかで感じていた違和感があった。 オートバイのエンジンを分解できる人と、エンジンが動く原理を理解している人は違う。コードが動くことと、なぜそう書くべきかを理解することも違う。私は前者だった。メカニックではあった

                                                                      缶つぶし機とソフトウェア移行技術 - Refactoring to Rust の読書感想文 - じゃあ、おうちで学べる
                                                                    • Basic Feature Engineering with DuckDB

                                                                      Introduction Data preprocessing is a necessary step in any machine learning workflow, affecting both the model’s effectiveness and the ease of maintenance. While scikit-learn is commonly used for preprocessing due to its integration with the broader Python ecosystem, DuckDB offers a practical alternative by enabling SQL-based data transformations within Python. Its declarative syntax supports modu

                                                                      • Gamedev in Lisp. Part 1: ECS and Metalinguistic Abstraction - cl-fast-ecs by Andrew

                                                                        Gamedev in Lisp. Part 1: ECS and Metalinguistic Abstraction In this series of tutorials, we will delve into creating simple 2D games in Common Lisp. The result of the first part will be a development environment setup and a basic simulation displaying a 2D scene with a large number of physical objects. It is assumed that the reader is familiar with some high-level programming language, has a gener

                                                                          Gamedev in Lisp. Part 1: ECS and Metalinguistic Abstraction - cl-fast-ecs by Andrew
                                                                        • Node.js

                                                                          Notable changes built-in .env file support Starting from Node.js v20.6.0, Node.js supports .env files for configuring environment variables. Your configuration file should follow the INI file format, with each line containing a key-value pair for an environment variable. To initialize your Node.js application with predefined configurations, use the following CLI command: node --env-file=config.env

                                                                            Node.js
                                                                          • June 2022 (version 1.69)

                                                                            Update 1.69.1: The update addresses these issues. Update 1.69.2: The update addresses these issues. Downloads: Windows: x64 Arm64 | Mac: Universal Intel silicon | Linux: deb rpm tarball Arm snap Welcome to the June 2022 release of Visual Studio Code. There are many updates in this version that we hope you'll like, some of the key highlights include: 3-way merge editor - Resolve merge conflicts wit

                                                                              June 2022 (version 1.69)
                                                                            • March 2025 (version 1.99)

                                                                              Update 1.99.1: The update addresses these security issues. Update 1.99.2: The update addresses these issues. Update 1.99.3: The update addresses these issues. Downloads: Windows: x64 Arm64 | Mac: Universal Intel silicon | Linux: deb rpm tarball Arm snap Welcome to the March 2025 release of Visual Studio Code. There are many updates in this version that we hope you'll like, some of the key highligh

                                                                                March 2025 (version 1.99)
                                                                              • Agents

                                                                                Intelligent agents are considered by many to be the ultimate goal of AI. The classic book by Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach (Prentice Hall, 1995), defines the field of AI research as “the study and design of rational agents.” The unprecedented capabilities of foundation models have opened the door to agentic applications that were previously unimaginabl

                                                                                  Agents
                                                                                • Prompt Engineering

                                                                                  Date: March 15, 2023 | Estimated Reading Time: 21 min | Author: Lilian Weng Prompt Engineering, also known as In-Context Prompting, refers to methods for how to communicate with LLM to steer its behavior for desired outcomes without updating the model weights. It is an empirical science and the effect of prompt engineering methods can vary a lot among models, thus requiring heavy experimentation a