並び順

ブックマーク数

期間指定

  • から
  • まで

1 - 40 件 / 279件

新着順 人気順

python if not in dictの検索結果1 - 40 件 / 279件

  • 日本株3700社以上を分析。yfinance x「わが投資術」株式スクリーニングアプリを作った話(バイブコーディング)

    いきなりですが。 海外旅行したり働き始めたりすると、日本の良さが身に染みたと感じた人は多いんじゃないでしょうか? なんかとりあえず外で働いてみたいと思っていましたが、今はいつ戻るかと考える日々です。(とにかく温泉に入りたい) また色々と各国を回る中で、日本企業ってアジア圏や他の国にもかなり進出してるんだなぁと実感しました。(そりゃそう) そんなこんなで日本株に興味を持ち 昨年にわが投資術を購入して実践し始めました。(まだ初めて一年目なので成績はわかりません。。。が、マイナスは無し) 自分でバフェットコードや Claude mcp-yfinance などを利用しながらスクリーニングしてみましたが、毎回決算が出るたびに手動とチャット相手にあるのも何かなぁ。と思いまして。 じゃあ自動収集とスクリーニング用のアプリ作ってみよう(vibe coding) そんなノリから、日本株全銘柄を自動収集・簡易

      日本株3700社以上を分析。yfinance x「わが投資術」株式スクリーニングアプリを作った話(バイブコーディング)
    • OpenAI API の ファインチューニングガイド|npaka

      1. ファインチューニングの利点ファインチューニングの利点は、次のとおりです。 (1) プロンプトよりも高品質な応答 (2) プロンプトに収まりきらないより多くの例の適用 (3) プロンプトの短縮によるトークン数 (コスト) の節約 (4) プロンプトの短縮による処理時間の短縮 モデルは膨大な量のテキストで事前学習されており、このモデルを効果的に利用するため、プロンプトに手順や応答の例を指定する手法が使われます。この例を使用してタスクの実行方法を示すことを「Few-Shot」と呼びます。 ファインチューニングで、プロンプトに収まりきらないより多くの例で学習することにより、さまざまなタスクでより良い結果を達成できるようになります。プロンプトに多くの例を指定する必要はなくなります。これによりトークン (コスト) が節約され、処理時間も短縮されます。 2. ファインチューニングの使用料金ファイン

        OpenAI API の ファインチューニングガイド|npaka
      • Google Antigravity のスタートガイド  |  Google Codelabs

        1. はじめに この Codelab では、IDE をエージェント ファーストの時代へと進化させるエージェント開発プラットフォームである Google Antigravity(以降、このドキュメントでは Antigravity と表記)について説明します。 行を自動補完するだけの標準的なコーディング アシスタントとは異なり、Antigravity は、計画、コーディング、ウェブの閲覧まで行う自律型エージェントを管理するための「ミッション コントロール」を提供し、構築を支援します。 Antigravity は「エージェント ファースト」のプラットフォームとして設計されています。これは、AI がコードを記述するツールではなく、人間の介入を最小限に抑えながら、複雑なエンジニアリング タスクの計画、実行、検証、反復処理を行うことができる自律的なアクターであることを前提としています。 学習内容 An

        • Pythonで理解するMCP(Model Context Protocol) | gihyo.jp

          動作環境 Python 3.12 ライブラリの使用バージョン gradio 5.34.2 anthropic 0.54.0 mcp 1.9.4 python-dotenv 1.1.0 仮想環境とライブラリインストール % cd mcp-host-with-gradio % python3 -m venv venv % source venv/bin/activate (venv) % pip install gradio anthropic mcp dotenv .envファイルの設定 AnthropicのAPIキーが必要です。APIキーの作成は以下を参考にしてください。APIの利用には料金がかかりますが、API従量課金であれば5ドルから始めることが可能です。 Claudeを使い始める -Anthropic .env ANTHROPIC_API_KEY=xxxxxxxxxxxxxxxxxx

            Pythonで理解するMCP(Model Context Protocol) | gihyo.jp
          • FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ|ハイクラス転職・求人情報サイト アンビ(AMBI)

            FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ PythonのWebフレームワークとしていま注目を集めるFastAPIは、シンプルにコードが書けるだけでなく、パフォーマンスが高いWebアプリケーションのバックエンドサーバーが構築可能です。同フレームワークの勘所をPythonスペシャリストの杜世橋さんが、初心者向けのハンズオン、そしてより実践的な画像への自動タグ付けサービス実装をとおして解説します。 FastAPIはいま非常に注目されているPythonのWebフレームワークの1つです。Flaskのようにシンプルに書ける一方でPythonのType Hintの機能をうまく活用し、HTTPのリクエスト/レスポンスをPythonの関数の引数/戻り値とシームレスにマッピングして非常に効率的に開発ができるのが最大の特徴です。非同期処理にも対応していてその名

              FastAPI入門 - モダンなPythonフレームワークの特性をチュートリアルで手軽に学ぶ|ハイクラス転職・求人情報サイト アンビ(AMBI)
            • LangChainを使わない - ABEJA Tech Blog

              TL; DR LangChainのメリデメを整理する過程で、今となってはopenai-pythonのうちChatGPTのAPIをを簡単に取り回せる程度のシンプルなライブラリがあるだけでも十分便利なんじゃないかと思ったので、ライブラリを個人で作ってみました。(バージョン0.0.1なのでちょっとお粗末な所もありますが) github.com はじめに こんにちは、データサイエンティストの坂元です。ABEJAアドベントカレンダーの13日目の記事です。世は大LLM時代ということで、ありがたいことにABEJAでも複数のLLMプロジェクトを推進させて頂いています。私自身もいくつかのLLMプロジェクトに参画しています。LLMといえばLangChainが便利ですね。OpenAI APIの利用だけでなく、各種ドキュメントのパースが出来たり、HuggingFaceやインデックスDBを扱う他のライブラリとインテ

                LangChainを使わない - ABEJA Tech Blog
              • みんなのためのLLMアプリケーション開発環境の構築事例

                はじめに こんにちは。Game Platform DevのDong Hun Ryoo、Takenaka、Zhang Youlu(Michael)、Hyungjung Leeです。私たちの組織は、ゲームパブリッシングに必要なさまざまな機能を開発・運用する役割を担っています。 私たちは最近、組織内の業務効率を高めるためにさまざまなLLM(large language model)アプリケーションを開発し、それと連携してLLMOpsシステムの構築プロジェクトを行いました。プロジェクトの主な目標の一つは、参入障壁が高いLLMアプリケーション開発を、職種に関係なく誰でも簡単に作成できる環境を構築することでした。そのため、さまざまなことを考えながら試行錯誤を経た結果、誰でも簡単にアクセスできる開発・デプロイ環境を整えました。 今回の記事では、LLMアプリケーションの一般的な開発方法と開発プロセスで直面

                  みんなのためのLLMアプリケーション開発環境の構築事例
                • MCP(Model Context Protocol)を活用したJグランツ補助金検索システムの実装例|デジタル庁

                  デジタル庁プロダクトマネージャーユニットの土岐竜一です。事業者の手続システム総括班で、Jグランツを含む事業者向けシステムなどを担当しています。 この記事では、デジタル庁が運用する補助金電子申請システム「Jグランツ」のAPIを、Anthropic社が提唱するModel Context Protocol(MCP) によりラッピングし、LLMから利用可能なシステムのサンプル設計および実装について説明します。 具体的には、Pythonで簡単に実装できるFastMCPフレームワークを利用し、Jグランツの補助金検索や詳細の取得などの実用的な機能を備えたMCPサーバーを例として実装します。なお、本記事におけるコードはGitHubよりダウンロード可能です。 本実装例で実現できること今回紹介するMCPサーバーを利用すると、LLM(Claudeなど)を通じて、以下のような自然言語によるJグランツの補助金検索や

                    MCP(Model Context Protocol)を活用したJグランツ補助金検索システムの実装例|デジタル庁
                  • LLMガードレールの活用法と役割を正しく理解する - GMO Flatt Security Blog

                    TL;DR LLMガードレールはLLMの入出力を監視・制御する技術であり、LLMアプリケーションにおける様々な脅威への対抗策になります。しかし、あくまで役割は脅威の緩和・低減であるため、それぞれの脅威に対する根本的な対策をした上で、万が一の事故に備え文字通りガードレールとして導入する必要があります。 本文中では、RAGアプリケーションの利用する外部データベースにプロンプトインジェクションを引き起こすデータが存在し、LLMに対する入力として利用された場合、LLMガードレールで検知する例を紹介しています。しかし、根本的には外部データベースに悪意あるデータが登録されないよう対策すべきです。 このブログではLLMガードレールで対応できる脅威を実際に検証しながら整理し、適切なユースケースを議論します。 はじめに こんにちは、GMO Flatt Security株式会社所属のセキュリティエンジニア滝上

                      LLMガードレールの活用法と役割を正しく理解する - GMO Flatt Security Blog
                    • PythonでDDDやってみた💪 - techtekt

                      はじめに 実行環境 ディレクトリ構造 app migrations/model pyproject.toml ソースコードと簡単な解説 app/core app/core/abstract app/core/decorator app/core/exception app/core/interface app/core/middleware app/core/mixin app/ddd app/ddd/application app/ddd/application/schema app/ddd/application/schema/studnet app/ddd/application/usecase app/ddd/application/usecase/student app/ddd/domain app/ddd/domain/student app/ddd/infra app/ddd

                        PythonでDDDやってみた💪 - techtekt
                      • 俺が考える最強の「麻雀点数申告練習アプリケーション」を作ってみる ~ Pythonによる麻雀点数計算問題の自動生成と音声による点数申告 ~ - エムスリーテックブログ

                        こちらはエムスリー Advent Calendar 2023 1日目の記事です。 Overview エムスリーエンジニアリンググループ AI・機械学習チームでソフトウェアエンジニアをしている中村(po3rin) です。趣味は麻雀でフリー雀荘で毎年200半荘以上打ちます。好きな麻雀プロは園田賢さんです。 麻雀を始めるときに一番の障壁になるのは点数計算ではないでしょうか? 特に符計算が初心者の関門のようです。一方私のような初中級者でも突然のレアな点数申告にまごつくことがあります。 そこで、今回はその人に合った麻雀の点数計算問題(主に符計算が焦点となる問題)を生成して、自分で点数計算&点数申告の練習をする方法を探求したのでその紹介をします。麻雀用語が少しだけ登場するので、対象読者は麻雀を少しでもかじったことのあるエンジニアの方です。 Overview 麻雀の点数計算の難しさ 現状の点数計算の練習

                          俺が考える最強の「麻雀点数申告練習アプリケーション」を作ってみる ~ Pythonによる麻雀点数計算問題の自動生成と音声による点数申告 ~ - エムスリーテックブログ
                        • Python普及しろ協会に入会したい

                          この記事はタナイ氏によるPython滅ぼす協会に入会したいを読んでから執筆したものです。 この記事の趣旨はPython滅ぼす協会に入会したいに対する反論という形をとりながら、タナイ氏により「バカの言語」と揶揄され、「使ってエンジニアを名乗るというのは」「滑稽」とまで言われたPythonの立場を再考することです。 追記 本記事は「Pythonはこれだけ優れた言語だからみんな使おう!」というものではなく「言うほど酷くないと思うよ」程度のものです。 型アノテーションがあるからと言って静的型付けを軽視しているわけでもなければ、map関数をもってmapメソッドを不要だと言っているわけでもありません。 この記法は嫌い〜この記法が好き〜と表明することは個人の自由ですが、同様に「この記法は実はこういう意味があって〜」という意見があればそれを聞いた上で、物事を判断して欲しいです。もちろん、聞いても意見が変わ

                            Python普及しろ協会に入会したい
                          • Writing Python like it’s Rust

                            You can check out a YouTube recording of a talk based on this blog post. I started programming in Rust several years ago, and it has gradually changed the way I design programs in other programming languages, most notably in Python. Before I started using Rust, I was usually writing Python code in a very dynamic and type-loose way, without type hints, passing and returning dictionaries everywhere,

                            • Python最新バージョン対応!より良い型ヒントの書き方 | gihyo.jp

                              寺田 学です。9月の「Python Monthly Topics」は、Python 3.5で導入され、多くの場面で活用されている型ヒント(Type Hints)について、より良い型ヒントの書き方を紹介します。 Pythonの型ヒントとは Pythonは動的型付け言語です。型を指定せずに変数宣言できますし、関数の引数や戻り値に型を宣言する必要はありません。 Python 3.5(2015年9月リリース)で型ヒントの仕組みが入りました。型の指定が不要なPythonですが、型ヒントを付けることで、「⁠コードの可読性向上⁠」⁠、「⁠IDEコード補完の充実⁠」⁠、「⁠静的型チェックの実行」といった静的型付け言語のようなメリットを得ることができます。 Pythonの型ヒントは以下のように記述します。 name: str = "氏名" # 変数nameをstr型と宣言 def f(arg: int) -

                                Python最新バージョン対応!より良い型ヒントの書き方 | gihyo.jp
                              • モノリシックなアプリケーション開発から小さなアプリケーション開発へ(Software Design連載 2022年3月号:設計方針から変えていく、 モノリシックなアプリの過去と未来) - MonotaRO Tech Blog

                                この記事の初出は、Software Design2022年3月号「設計方針から変えていく、モノリシックなアプリの過去と未来(最終回)」で、加筆修正されています。過去の連載記事は以下を参照ください。 第1回 Software Design連載 2021年8月号 Python製のレガシー&大規模システムをどうリファクタリングするか - MonotaRO Tech Blog 第2回 Software Design連載 2021年9月号 「テストが無い」からの脱却 - MonotaRO Tech Blog 第3回 Software Design連載 2021年10月号 スナップショットテストの可能性を追求する - MonotaRO Tech Blog 第4回 Software Design連載 2021年11月号 Robot FrameworkでE2Eテストを自動化する - MonotaRO Te

                                  モノリシックなアプリケーション開発から小さなアプリケーション開発へ(Software Design連載 2022年3月号:設計方針から変えていく、 モノリシックなアプリの過去と未来) - MonotaRO Tech Blog
                                • 25年総裁選の小泉陣営のやらせコメントとそれ以外のコメントを深掘りしてみた|破綻国家研究所

                                  目次 はじめにこんばんは。 最近大好きなうまかっちゃんで胃もたれしてしまう破綻国家研究所です。 さて、2025年の自民党総裁選では、小泉陣営がネット上にやらせコメを仕込んだとされるメールを週刊文春がすっぱ抜き、毎日新聞が24の例文を公表しました。 実際にニコニコ生放送の中継にも、支持を盛り上げるようなコメントがちょこちょこ見受けられ、一部では「世論操作ではないか」との指摘も見られました。 まあ昔からこういうのはあるんでしょうね。知らんけど。 ただ、実際の放送コメントを覗いてみると、小泉陣営以外を支持する声や、冷静に論評するコメントも数多く確認できます。 果たして「やらせコメント」がどの程度の存在感を持っていたのか、そしてその他の自然発生的なコメントと比べてどのような特徴があったのでしょうか。 本稿では、ニコニコ生放送で流れたコメントを Niconama Comment Viewer (NC

                                    25年総裁選の小泉陣営のやらせコメントとそれ以外のコメントを深掘りしてみた|破綻国家研究所
                                  • MCPサーバー作成の公式クイックスタートをやってみた | DevelopersIO

                                    お疲れさまです。とーちです。 こちらの記事を読んで、MCPサーバーすごそうとなったのでMCPについてキャッチアップしたくなりました。 また、こちらの資料を読んでいて知ったのですが、MCPサーバーを作るクイックスタートが公開されているようです。これは良さそうだと思ったのでクイックスタートをやってみることにしました。 やさしいMCP入門 クイックスタートのURLは以下になります。 For Server Developers - Model Context Protocol MCPとは? そもそもMCPとは?といった部分については上記の資料等をご確認いただければと思いますが、自分なりに理解したことをまとめると以下のようになります。 MCPとは アプリケーションが LLM にコンテキストを提供する方法を標準化するためのもの MCP は、AI アプリケーション用の USB-C ポートのようなもので、

                                      MCPサーバー作成の公式クイックスタートをやってみた | DevelopersIO
                                    • Claudeを"育てる"新常識! Agent Skills徹底解説 - あなたの仕事を自動化する魔法のレシピ ✨|Kyutaro

                                      Claudeを"育てる"新常識! Agent Skills徹底解説 - あなたの仕事を自動化する魔法のレシピ ✨ 属人化をやめたい。品質を揃えたい。スピードは落とさない。 Agent Skillsは、現場のノウハウを「再現可能な資産」に変えます。プロンプトではなく標準手順×コードで積み上げるから、新人でもベテランと同じ結果に。それを実現するのが、Anthropicの画期的な機能、「Agent Skills」です。 この記事は、導入判断に必要な安全性・運用設計・環境別のリスクと効率、そして即導入できるサンプルまで一気通貫で解説し、あなたが今日からでも「AIを育てる」ための、実践的な設計図を提供します。 1. そもそもAgent Skillsって何? - AIの新しい「引き出し」術 🗄️Agent Skillsとは、端的に言えば「AIに特定のタスクを教え込むための、手順書と道具箱をまとめたフ

                                        Claudeを"育てる"新常識! Agent Skills徹底解説 - あなたの仕事を自動化する魔法のレシピ ✨|Kyutaro
                                      • GPT-5 の新パラメータとツール|npaka

                                        以下の記事が面白かったので、簡単にまとめました。 ・GPT-5 New Params and Tools - OpenAI Cookbook 1. verbosity1-1. 概要「verbosity」は、出力トークン数を調節できます。 ・low : 簡潔なUX、簡潔な文章 ・medium (デフォルト) : バランスの取れた詳細 ・high : 詳細な情報。監査、教育、引き継ぎに最適 1-2. verbosityの効果の確認プロンプトを一定に保ったまま、「verbosity」を変更することで、効果を確認できます。 response = client.responses.create( model="gpt-5", input="人生、宇宙、そして万物に関する究極の問いに対する答えは何でしょうか?", text={ "verbosity": "low" } ) print(response

                                          GPT-5 の新パラメータとツール|npaka
                                        • gpt-oss の使い方|npaka

                                          以下の記事が面白かったので、簡単にまとめました。 ・Welcome GPT OSS, the new open-source model family from OpenAI! 1. gpt-oss「gpt-oss」は、OpenAIによる待望のオープンウェイトリリースであり、強力なReasoning、エージェントタスク、そして多様な開発者ユースケース向けに設計されています。117Bのパラメータを持つ大規模モデル「gpt-oss-120b」と、21Bのパラメータを持つ小規模モデル「gpt-oss-20b」の2つのモデルで構成されています。どちらも「MoE」(Mixture-of-Experts) であり、MXFP4を使用することで、リソース使用量を抑えながら高速推論を実現します。大規模モデルは単一のH100 GPUに収まり、小規模モデルは16GBのメモリ内で動作し、コンシューマーハードウェア

                                            gpt-oss の使い方|npaka
                                          • 既存リソースをTerraformでimportする作業を楽にする - KAYAC Engineers' Blog

                                            SREチームの今です。 カヤックでは、クラウドリソースの管理にはTerraformを利用することが多いです。 クラウドリソースの構成や設定をコードで管理することで、リソースの変更内容の差分をレビューできる、意図しない設定変更を発見できるなどの利点があり、SREの目的であるサービスを安定して提供する上で重要な要素の一つです。 実際の作業として、既に運用中のサービスを新たにTerraform管理下に置く場合や、多くのリソースが既にweb consoleから作成されているものをTerraform管理下に追加する場合も多いと思います。 その際にはTerraform importをする必要があります。しかし、Terraform importは単純作業とはいえ時間と手間がかかり、優先順位を下げてついつい後回しにしてしまうことも多いのではないでしょうか。 今回は、手作業でTerraform import

                                              既存リソースをTerraformでimportする作業を楽にする - KAYAC Engineers' Blog
                                            • Performance comparison: counting words in Python, Go, C++, C, AWK, Forth, and Rust

                                              Performance comparison: counting words in Python, Go, C++, C, AWK, Forth, and Rust March 2021 Summary: I describe a simple interview problem (counting frequencies of unique words), solve it in various languages, and compare performance across them. For each language, I’ve included a simple, idiomatic solution as well as a more optimized approach via profiling. Go to: Constraints | Python Go C++ C

                                              • Auth0からCognitoへのユーザー移行 - ROBOT PAYMENT TECH-BLOG

                                                こんにちは。ROBOT PAYMENT (以下、ロボペイ)でエンジニアをしているtakamoriです。 私が所属しているチームでは、請求先マイページ機能を開発しており、その中でユーザー認証基盤をAuth0からCognitoへと移行させました。そこで今回は、Auth0からCognitoへのユーザー移行手順を書いていきたいと思います。 ※ 本記事ではAuth0やCognitoの環境構築は対象外で、それぞれの環境が構築済み前提となります。 移行手順 Auth0からユーザーをエクスポート Auth0ユーザー情報をCognitoユーザー情報へマッピング Cognitoへユーザーをインポート Auth0からユーザーをエクスポート Auth0からのユーザーをエクスポートするには、ExportUsersJob APIを利用します。GetUsers APIを利用して取得することも可能ですが1,000件の取得

                                                  Auth0からCognitoへのユーザー移行 - ROBOT PAYMENT TECH-BLOG
                                                • GPT in 60 Lines of NumPy | Jay Mody

                                                  January 30, 2023 In this post, we'll implement a GPT from scratch in just 60 lines of numpy. We'll then load the trained GPT-2 model weights released by OpenAI into our implementation and generate some text. Note: This post assumes familiarity with Python, NumPy, and some basic experience with neural networks. This implementation is for educational purposes, so it's missing lots of features/improv

                                                  • これぞ革命!?ゼロから大規模言語モデルを学習できるReLORA登場(7/18追記あり)|shi3z

                                                    導入 本当に革命的な技術なのか? 「君たちはどう生きるか」で驚いている間にすごい論文が世界の話題を掻っ攫っていた。 その名も「ReLORA」簡単に言えば、「事前学習にLoRAを使う」というものである。 これは本当に革命的な発見かもしれないので、僕の仮説も含めて丁寧に説明する。 まず、大前提として、「LoRA」という技術について LoRAは、「Low Rank Adaptation(日本語で言うとすれば低階適応)」という技術で、これまでは主にファインチューニングに使われてきた。 ファインチューニングとは、あらかじめ学習されたニューラルネットワークに対して追加で学習させ、概念を強調させたり新しく覚えさせたりする。 たとえば、僕の顔でStableDiffusionをファインチューニングすれば、僕みたいな顔の絵がどんどん出てくる。 言語モデルにおけるLoRAも同様で、新しい概念や「こういうやりとり

                                                      これぞ革命!?ゼロから大規模言語モデルを学習できるReLORA登場(7/18追記あり)|shi3z
                                                    • LMQL(Language Model Query Language)概観|mah_lab / 西見 公宏

                                                      LMQL Playgroundでクエリを試すLMQLには動作を簡単に検証できるPlaygroundが用意されています。ローカルでPlaygroundを起動することもできます。 まずはGetting Startedで紹介されている以下のクエリを実行します。 argmax "Hello[WHO]" from "openai/text-ada-001" where len(WHO) < 10「Run」ボタンをクリックするとOpenAIのAPI KEYを求められるので、入力します。 実行するとModel Responseの枠に結果が表示されます。 LMQLの基本構造LMQLは記法的にはSQLと似ていて、以下のような構造を持っています。 デコーダ節(Decoder Clause): テキスト生成に使用するデコード・アルゴリズムを指定します。LMQLでは様々なデコード・アルゴリズムを選択することができ

                                                        LMQL(Language Model Query Language)概観|mah_lab / 西見 公宏
                                                      • ClaudeのMCPを徹底解説! & gpt-4o+MCP+YouTube APIの動画推薦チャットAIも作る - Qiita

                                                        mcp_server_youtube という名前にしました。 mcp_server_youtube というディレクトリができます。 mcp_server_youtube/src/mcp_server_youtube/server.py にサーバー実装を記述します。 実装 MCPサーバーの実装はほとんどgpt-4oを使って行いました。 ポイント 今回はこのサーバーに登録されたツールが youtube-search のみなので、handle_call_tool に到着したリクエストが youtube-search と一致している場合のみ処理行います YouTube Data API v3 は単純にAPIを実装するだけです これの嬉しさ 普通にfunction callingからAPIを叩くだけなら、MCPサーバーはいりません。ただ、独立したMCPサーバーとして作ることで再利用がしやすい形になり

                                                          ClaudeのMCPを徹底解説! & gpt-4o+MCP+YouTube APIの動画推薦チャットAIも作る - Qiita
                                                        • 1つの大きなLLM(大規模言語モデル)を複数のGPUで力を合わせて動かそう | IIJ Engineers Blog

                                                          地方拠点の一つ、九州支社に所属しています。サーバ・ストレージを中心としたSI業務に携わってましたが、現在は技術探索・深堀業務を経て、ローカルLLMを中心としたAIソリューションを主軸に対応しています。 2018年に難病を患ったことにより、定期的に入退院を繰り返しつつ、2023年には男性更年期障害の発症をきっかけに、性的違和の治療に一歩足を踏み出しています。 LLM群雄割拠の時代 昨今、ローカルGPUで駆動できるようなLLM(大規模言語モデル)もかなり増えてきて、キャッチコピー的に「ついに我が家にもGPT-4が!」とか言われるようになってまいりました。パラメータ規模で言えば70億~130億(7B-13B)パラメータ、700億(70B)パラメータ、1400億(140B)パラメータあたりのモデルが活発にリリースされているように見受けられます。 大きなモデルをGPU寄せ集めしつつ遊びたい! しかし

                                                            1つの大きなLLM(大規模言語モデル)を複数のGPUで力を合わせて動かそう | IIJ Engineers Blog
                                                          • Claude Desktopに記憶を与えるLocal Memory MCPを自作してみて感動した話

                                                            はじめに Claude Sonnet 4はコーディングが得意だけでなく、ほかのAIより人間性豊かで会話していて深い哲学的な気づきを得られる。そのため、技術的なところだけでなくプライベートのことも含めていろいろ話している。 ただ、ChatGPTと異なりメモリ機能を備え付けではないので、正直物足りないことも多かった。 Claude Desktop では MCP を使えるので、自分で MCP を作ればツール自作できるということに気づいた。そこでローカルで簡易的なメモリ機能を実装してみたら、個人的にとても感動した。 *全体的に個人的感想が多く含まれてます。すみません。 実際に何ができるようになったか まず、どんなことができるようになったか見てもらった方が早いと思う。 私はなぜLocal Memory MCPを作ったかを聞いたら 記憶をベースにかなり詳細な理由を述べてくれた。 AWSが出した新しいA

                                                              Claude Desktopに記憶を与えるLocal Memory MCPを自作してみて感動した話
                                                            • CIの時間を(できるだけ楽して)半分にしてみた - Nealle Developer's Blog

                                                              こんにちは、ニーリーの佐古です。 現在開発速度や開発者体験の向上のため、取り組みの諸々を遂行しています。 開発者体験とCI 天井の雨漏りが4か月ほど止まらないので私の開発者体験は酷いことになっています。 さて、皆さんCIの待ち時間はお好きですか?私は大嫌いです。 弊社バックエンドリポジトリのPR時CIはプロダクトの成長に合わせて実行時間が順調に伸びており、 開発速度と開発者体験の双方に悪影響をもたらしていました。 実は別チームで改善のための試みがなされたことはあったのですが、 そこで行き当たった問題をある程度解決してどうにかエピソードになる程度の成果を得られたので 簡単に記しておこうと思います。 前提 プロダクトはDjangoで、リポジトリはGitHubで管理されています。 AS-WAS ついこないだまでのPR時CI。 こちらがもともとのGitHub CIのグラフです。 正直経験上そこまで

                                                                CIの時間を(できるだけ楽して)半分にしてみた - Nealle Developer's Blog
                                                              • SHAPで因果関係を説明できる? - Qiita

                                                                はじめに 予測モデル(機械学習モデル)を解釈するのに有用なSHAPを用いて因果関係を説明することができるか、についてPythonによるシミュレーションを交えてまとめました。内容に誤り等ございましたら、ご指摘いただけますと幸いです。 結論 基本的に、SHAPで因果関係は説明できません。これは、SHAPが予測モデルの因果ではなく相関を明らかにするものであるからです。 そこで今回は、予測モデルをSHAPで解釈する上でありがちなミスリーディングや、それに関連する因果効果を推定するためのアプローチについて記載しています。 そもそもSHAPとは SHAPとはSHapley Additive exPlanationsの略で、協力ゲーム理論のShapley Valueを機械学習に応用した手法です。「その予測モデルがなぜ、その予測値を算出しているか」を解釈するためのツールとしてオープンソースのライブラリが開

                                                                  SHAPで因果関係を説明できる? - Qiita
                                                                • ソースコード & ドキュメントに対応したGraph RAGの実装(Tree-sitter + LightRAG)

                                                                  (module (function_definition (identifier) # ← ここに関数名「sample_func」が含まれます (parameters) (block (expression_statement (call (identifier) (argument_list (string)))))) (expression_statement (call (identifier) (argument_list)))) ノードが色々取れましたが、「function_definition」が関数、その子である「identifier」が関数名を表すため、 function_definition == 子ノード ==> identifier となっている箇所を探索すれば抽出できます(関数ではあっても「lambda」など異なる場合もあります)。 今回は上記のようにTree-si

                                                                    ソースコード & ドキュメントに対応したGraph RAGの実装(Tree-sitter + LightRAG)
                                                                  • 【技術選定/OSS編】LLMプロダクト開発にLangSmithを使って評価と実験を効率化した話 - Gaudiy Tech Blog

                                                                    こんにちは。ファンと共に時代を進める、Web3スタートアップ Gaudiy の seya (@sekikazu01)と申します。 この度 Gaudiy では LangSmith を使った評価の体験をいい感じにするライブラリ、langsmith-evaluation-helper を公開しました。 github.com 大まかな機能としては次のように config と、詳細は後で載せますが、LLMを実行する関数 or プロンプトテンプレートと評価を実行する関数を書いて description: Testing evaluations prompt: entry_function: toxic_example_prompts providers: - id: TURBO config: temperature: 0.7 - id: GEMINI_PRO config: temperature:

                                                                      【技術選定/OSS編】LLMプロダクト開発にLangSmithを使って評価と実験を効率化した話 - Gaudiy Tech Blog
                                                                    • 900行のコードをノーミスで出力するClaude 3.5 Sonnet (New) やるなお主|平岡憲人(ノーリー)

                                                                      こんにちは! ノーリーです。ClaudeやChatGPT、Gemini使ってますか? 今朝リリースされた、Claude 3.5 Sonnet (New)のコード生成能力を味う記事です。 では、まったり参りましょう! 1.公式情報Claude 3.5 Sonnetは、コーディング能力において大きな進化を遂げたAIモデルだそうです。このモデルの新機能と改善点は以下の通りです。 強化されたコーディング支援: Claude 3.5 Sonnetは、JavaScriptやPythonなどの様々なプログラミング言語でコード生成する能力に優れています。簡単なコード補完から複雑な問題解決シナリオまで対応可能で、開発プロセスを大幅に効率化できます。 問題解決能力の向上: HumanEvalベンチマークで64%の問題を解決する能力を示し、前バージョンのClaude 3 Opusの38%から大幅に向上しました。

                                                                        900行のコードをノーミスで出力するClaude 3.5 Sonnet (New) やるなお主|平岡憲人(ノーリー)
                                                                      • Writing a C compiler in 500 lines of Python

                                                                        A few months ago, I set myself the challenge of writing a C compiler in 500 lines of Python1, after writing my SDF donut post. How hard could it be? The answer was, pretty hard, even when dropping quite a few features. But it was also pretty interesting, and the result is surprisingly functional and not too hard to understand! There's too much code for me to comprehensively cover in a single blog

                                                                        • LaTeX と Python で作る 1 ポイントたりとも表示崩れしない最強の帳票印刷ソリューション - Qiita

                                                                          Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 元ネタ 元ネタはこちらです(以下「Figma と PHP」で略します)。 読んでなるほどと思いました。このように、誰かが苦労したおかげで後続が楽になるので感謝です。何が問題点として生じるのか、どんな解決方法が考えられるのか、が予め判明しているだけでもだいぶ楽になります。 反面、$\LaTeX$ の方が実装は簡易ではないかと思ったので、それを実践してみました。 条件と問題点 Figma と PHP の 44 ページに以下のような条件があります 改めて、満たしたい条件 ミリ単位で細かく帳票をデザインしたい。 帳票デザインの保守性を維持するた

                                                                            LaTeX と Python で作る 1 ポイントたりとも表示崩れしない最強の帳票印刷ソリューション - Qiita
                                                                          • 型安全かつシンプルなAgentフレームワーク「PydanticAI」の実装を解剖する - ABEJA Tech Blog

                                                                            はじめに こちらはABEJAアドベントカレンダー2024 12日目の記事です。 こんにちは、ABEJAでデータサイエンティストをしている坂元です。最近はLLMでアプローチしようとしていたことがよくよく検証してみるとLLMでは難しいことが分かり急遽CVのあらゆるモデルとレガシーな画像処理をこれでもかというくらい詰め込んだパイプラインを実装することになった案件を経験して、LLMでは難しそうなことをLLM以外のアプローチでこなせるだけの引き出しとスキルはDSとしてやはり身に付けておくべきだなと思うなどしています(LLMにやらせようとしていることは大抵難しいことなので切り替えはそこそこ大変)。 とはいうものの、Agentの普及によってより複雑かつ高度な推論も出来るようになってきています。弊社の社内外のプロジェクト状況を見ていても最近では単純なRAG案件は減りつつあり、計画からアクションの実行、結果

                                                                              型安全かつシンプルなAgentフレームワーク「PydanticAI」の実装を解剖する - ABEJA Tech Blog
                                                                            • SlackでChatOps!CodeDeployのBlue/Greenデプロイを操作する方法 - SMARTCAMP Engineer Blog

                                                                              スマートキャンプ、エンジニアの入山です。 昨年末から弊社BOXILでは、EC2からECS/Fargateへのインフラ移行作業を実施しています。 EC2運用からコンテナベースのECS運用への移行は、インフラの思想として異なる部分も多く、一筋縄ではいかないということを日々痛感しています。特に運用面に関する仕組みやノウハウは大きく異なっているため、今までと同等の運用を異なる方法で実現する必要があり、頭を悩ませることが多いです。 例えば、今まではEC2にSSHしてコマンドを投入していたが、ECS/Fargate上で同じことをどうやってやるのか…など。SSHしなくても良い運用にすることも必要ですが、今まで当たり前に出来ていたことが万が一の時にどうやっても出来なくなるのはやはり辛い問題ではないでしょうか。 また、とりあえず移行はできたけど、今までよりも運用に時間や手間が掛かるようになった…といったこと

                                                                                SlackでChatOps!CodeDeployのBlue/Greenデプロイを操作する方法 - SMARTCAMP Engineer Blog
                                                                              • Security best practices when using ALB authentication | Amazon Web Services

                                                                                Networking & Content Delivery Security best practices when using ALB authentication At AWS, security is the top priority, and we are committed to providing you with the necessary guidance to fortify the security posture of your environment. In 2018, we introduced built-in authentication support for Application Load Balancers (ALBs), enabling secure user authentication as they access applications.

                                                                                  Security best practices when using ALB authentication | Amazon Web Services
                                                                                • ChatGPT Retrieval Pluginに任意のベクトル検索エンジンProviderを実装する - エムスリーテックブログ

                                                                                  Overview エムスリーエンジニアリンググループ AI・機械学習チームでソフトウェアエンジニアをしている中村(po3rin) です。検索とGoが好きです。 エムスリーではChatGPTの可能性にいち早く注目して活用を検討している段階ですが、本格的なデータ投入にはまだ懸念もあり、セキュリティチームと検討を進めている段階です。 そんな中で個人または組織のドキュメントのセマンティック検索と取得を可能にするChatGPTプラグイン「ChatGPT Retrieval Plugin」が登場しました。 github.com 情報検索好きとしては黙っていられず、外部公開用のエムスリーAI・機械学習チームのメンバー紹介ドキュメントを使ってローカルで試してみました。 # 用意したドキュメント 中村弘武は東京都在住で、エムスリーという企業で働いでいます。 エムスリーの検索基盤を主に担当しています。また、書

                                                                                    ChatGPT Retrieval Pluginに任意のベクトル検索エンジンProviderを実装する - エムスリーテックブログ