1. The document discusses probabilistic modeling and variational inference. It introduces concepts like Bayes' rule, marginalization, and conditioning. 2. An equation for the evidence lower bound is derived, which decomposes the log likelihood of data into the Kullback-Leibler divergence between an approximate and true posterior plus an expected log likelihood term. 3. Variational autoencoders are
This paper shows that a perturbed form of gradient descent converges to a second-order stationary point in a number iterations which depends only poly-logarithmically on dimension (i.e., it is almost "dimension-free"). The convergence rate of this procedure matches the well-known convergence rate of gradient descent to first-order stationary points, up to log factors. When all saddle points are no
In this tutorial, we will answer some common questions about autoencoders, and we will cover code examples of the following models: a simple autoencoder based on a fully-connected layer a sparse autoencoder a deep fully-connected autoencoder a deep convolutional autoencoder an image denoising model a sequence-to-sequence autoencoder a variational autoencoder Note: all code examples have been updat
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く