概要 回帰モデルとは、与えられた入力を用いて目標変数を予測するモデルです。 回帰モデルでは過学習を防ぐため、誤差関数(二乗誤差関数など)に次の式で表される正則化項を加えて最小化します。 この形の正則化項を用いる回帰をブリッジ回帰と呼びます。 特にの時をLasso回帰、の時をRidge回帰と呼びます。また、それぞれに用いられている正則加項をL1ノルム、L2ノルムと呼びます。 L1ノルムとL2ノルムの特徴を簡単にまとめると次のようになります。 L1ノルムはパラメータの一部を完全に0にするため、モデルの推定と変数選択を同時に行うことができる 特に次元数>>データ数の状況で強力 L2ノルムは微分可能であり解析的に解けるが、L1ノルムは 解析的に計算出来ない L1ノルムには様々な推定アルゴリズムが提案されている また、L1ノルムには 次元が標本数より大きい時、高々個の変数まて