Randomized Neural Networks explore the behavior of neural systems where the majority of connections are fixed, either in a stochastic or a deterministic fashion. Typical examples of such systems consist of multi-layered neural network architectures where the connections to the hidden layer(s) are left untrained after initialization. Limiting the training algorithms to operate on a reduced set of w
Fudan CCDC model (time delay dynamical system): $$ \begin{aligned} \frac{\mathrm{d} I}{\mathrm{d} t} &= r I_{0}(t) \\ \frac{\mathrm{d} J}{\mathrm{d} t} &= r \int_{-\infty}^{t} f_{4}(t-s) I_{0}(s) \mathrm{d} s \\ \frac{\mathrm{d} G}{\mathrm{d} t} &= \ell(t) \left[ \int_{-\infty}^{t} f_{2}(t-s) I_{0}(s) d s - \int_{-\infty}^{t} f_{4}(t-s) I_{0}(s) \mathrm{d} s \right] \\ \end{aligned} $$ $I(t)$: the
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く