タグ

ブックマーク / qiita.com/SamN (2)

  • 量子情報理論の基本:マジック状態蒸留 - Qiita

    $$ \def\bra#1{\mathinner{\left\langle{#1}\right|}} \def\ket#1{\mathinner{\left|{#1}\right\rangle}} \def\braket#1#2{\mathinner{\left\langle{#1}\middle|#2\right\rangle}} $$ はじめに 誤り訂正符号を使ってユニバーサル量子計算を行うためには、「(1)論理パウリ演算」「(2)論理CNOT演算」「(3)論理アダマール演算」「(4)論理位相シフト演算」の各々を誤り耐性がある形で構成する必要があります。このうち、(1)(2)(3)は1量子ビットに対する(単体の)クリフォード演算(X,Y,Z,H,CNOTゲート)だけで実現できます1。が、(4)については単体のクリフォード演算(X,Y,Z,H,CNOTゲート)以外に、十分に精度の高い特別

    量子情報理論の基本:マジック状態蒸留 - Qiita
  • 量子情報理論の基本:Lattice Surgery - Qiita

    $$ \def\bra#1{\mathinner{\left\langle{#1}\right|}} \def\ket#1{\mathinner{\left|{#1}\right\rangle}} \def\braket#1#2{\mathinner{\left\langle{#1}\middle|#2\right\rangle}} $$ はじめに 前回の記事で量子誤り訂正符号について一区切り付いたと言いましたが、やはりこれはどうしても外せません。というわけで、今回は「Lattice Surgery」を取り上げます。Braidingは格子状に敷き詰められた量子ビット集団に欠陥対を形成しそれを論理量子ビットと見立てて、欠陥を動き回らせることで論理演算を実現するのでした。物理量子ビットに対する演算はすべて局所的に行われるので(つまり、遠距離にある物理量子ビット同士の演算が一切ないので)、ハード

    量子情報理論の基本:Lattice Surgery - Qiita
  • 1