データ分析LT会第二回で発表した際の資料です。 youtube: https://www.youtube.com/watch?v=jDZwX3jxhK4 conppass url: https://kaggle-friends.connpass.com/event/214854/ gi…

データ分析LT会第二回で発表した際の資料です。 youtube: https://www.youtube.com/watch?v=jDZwX3jxhK4 conppass url: https://kaggle-friends.connpass.com/event/214854/ gi…
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesisは2020年を代表する深層学習関連の論文の一本であることは間違いないでしょう。もう2022年も2月に差し掛かっていますが、いまさらながら、NeRFの論文を読んだので、初見の際にわかりづらかったところを解説してみます。 NeRFでできること NeRFは、100枚程度の画像データから、そのシーンの三次元形状を復元し、新しい視点からの画像を生成します。以下の動画を再生していただければわかるように、かなり自然な新視点画像生成が行えます。学習に使うのは画像だけなので、写真を撮るだけで現実のシーンにも適用できます。 NeRFには以下のような制約があります。 シーンは静的でなければならない 何らかの手法を使って各画像の外部カメラパラメーターを求めておかなければならな
こんにちは。 ティアフォーで自動運転ソフトウェア開発を行っている村上です。 今回はDeep Learningを使った三次元物体認識の手法を紹介していきます。 TL;DR: 12msで動作する三次元物体認識アルゴリズムの開発 自動運転におけるDeep Learning 点群を処理するためのDeep Learning ざっと従来手法 従来手法での問題 形状推定の必要性 Deep Learningで可能なこと 三次元物体認識アルゴリズム「PointPillars」の紹介 ざっと類似手法 なぜ「PointPillars」 CUDAとTensorRTによる高速化 最後に 自動運転におけるDeep Learning 自動運転では主に周りの環境を認識する際にDeep Learningを用いることが多いです。画像認識アルゴリズムであるSSD*1やYOLO*2が有名なものになります。 Deep Learni
IPOL is a research journal of image processing and image analysis which emphasizes the role of mathematics as a source for algorithm design and the reproducibility of the research. Each article contains a text on an algorithm and its source code, with an online demonstration facility and an archive of experiments. Text and source code are peer-reviewed and the demonstration is controlled. IPOL is
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く