NNEF reduces machine learning deployment fragmentation by enabling a rich mix of neural network training tools and inference engines to be used by applications across a diverse range of devices and platforms. The goal of NNEF is to enable data scientists and engineers to easily transfer trained networks from their chosen training framework into a wide variety of inference engines. A stable, flexib
Deep convolutional neural networks take GPU days of compute time to train on large data sets. Pedestrian detection for self driving cars requires very low latency. Image recognition for mobile phones is constrained by limited processing resources. The success of convolutional neural networks in these situations is limited by how fast we can compute them. Conventional FFT based convolution is fast
デンソーアイティーラボラトリの佐藤です。 12/3-4にパシフィコ横浜で開催された、ViEW2015(ビジョン技術の実利用ワークショップ)において、CNN (Convolutional Neural Network) のチュートリアル講演を行いました。その時に使用したスライドを掲載します。 国内における画像系のDeep Learningのチュートリアルは、東京大学の中山英樹先生(スライド)や、中部大学の山下隆義先生(スライド)らによるものが有名です。網羅的かつ分かりやすいため、入門者の方々にはとても参考になると思います。 ぼくのチュートリアル講演では、入門者と中級者のあいだくらいの方々をターゲットにしました。誤差逆伝搬法や活性化関数などは一通り知っているけど、バリバリ使いこなしているとは言えないなあ、といった方々に役立つ知見を盛り込んだつもりです。参考になれば幸いです。
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く