株式会社 Preferred Networks 岡野原 大輔 @hillbig 生成モデルは世界を どのように理解しているのか 「統計的機械学習」の中核としての 統計数理シンポジウム 2023/05/25 アジェンダ • 現在の代表的な生成モデル 大規模言語モデル/ 拡散モデル • 自己教師あり学習 / メタ学習 • 未解決問題 岩波書店 2023 一般向け 関連書籍 岩波書店 2023 専門家向け 技術評論社 2021 2022 ディープラーニングの基礎知識 日経BP 2022 個別の深い話題 生成モデル x ~ p(X | C) X: 生成対象 C: 条件 • 生成モデル:対象ドメインのデータを生成できるようなモデル – テキスト、画像、動画、化合物、行動列 等 – 条件を通じて、制約、指示、対象ドメインなどを指定する (条件付き生成モデルの方が学習の面でも使いやすさの面 でも有利であ
MAMLとその派生サーベイ Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks (MAML) (ICML 2017) On First-Order Meta-Learning Algorithms (Reptile) (OpenAI 2018) RECASTING GRADIENT-BASED META-LEARNING AS HIERARCHICAL BAYES (LLAMA) (ICLR 2018) Bayesian Model-Agnostic Meta-Learning (BMAML) (NeurIPS 2018) Probabilistic Model-Agnostic Meta-Learning (PLATIPUS) (NeurIPS 2018) HOW TO TRAIN YOUR MAML (MA
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く