
エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
記事へのコメント13件
- 注目コメント
- 新着コメント

注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
MCP + DB > RAG?
RAGの限界性 RAG、つまり検索強化生成(Retrieval-Augmented Generation)は、現在の大規模言語モデル分... RAGの限界性 RAG、つまり検索強化生成(Retrieval-Augmented Generation)は、現在の大規模言語モデル分野における注目の方向性です。これは情報検索技術と生成モデルを組み合わせ、大規模モデルの知識の正確性、文脈理解、最新情報の活用などの課題を解決します。 でも追加の知識をRAGを通じて導入するだけで、モデルがそれらの知識関連の質問に完璧に対応できると考えています。しかし実際と想像にはギャップがあり、実際に試してみると、RAGの精度はそれほど良くないことに気づくかもしれません。 RAG自体の技術的原理から見ると、現在以下の問題が存在します: 検索精度の不足:まず、RAGの最も核心的な部分は、知識を「ベクトル」に変換し、「ベクトルデータベース」に導入し、ユーザーの入力情報も「ベクトル」に変換してから、ベクトルデータベースから類似の「ベクトル」をマッチングさせ、最後に
2025/04/19 リンク