[重要なお知らせ (2023/8/12)] 現在,スライドの p.10 に不十分な記述があります.ルートの答えは 0 以上の数に限定することに注意してください (たとえば -3 を 2 乗しても 9 ですが,ルート 9 は -3 ではありません).なお,現在筆者のパソコンが修理中でデータがないので,修…
先日の記事 誰もがどこかでつまずいた→小学校の算数から大学数学まで126の難所を16種類に分類した 読書猿Classic: between / beyond readers を読んだ人から「やりなおし魂に火をつけるだけつけて放置するのは無責任だ、何をやればいいのか教えろ」という問い合わせがあった。 小学校の算数レベルから微積分など高校+αまで、ついている予備テストをやれば、どの章は飛ばしていいか、どこの章のどの問題を勉強すればよいかを教えてくれる往年の名著(が復刻してた) を紹介しようと思ったが(科学を志さない人にも勧められる)、買い損なった場合と人のために、web上の教材をリストにして、先の記事の補いとする。 (2017.9.6 リンク切れ等、訂正しました) 小学校〜高校 小学校の算数 中学校の数学 高校数学 大学数学基礎 小学校〜高校 小学校「算数科」,中学校・高等学校「数学科」の内容
去年の12月頃から数学の学び直しを始めた。 職業柄少し専門的な、特に機械学習の方面の書籍などに手を出し始めると数式からは逃れられなかったりする。とはいえ元々自分は高校時代は文系で数学1A2Bまでしか履修していない。そのせいか少し数学へ苦手意識があり「図でわかるOO」とか「数学無しでもわかるOO」のような直感的に理解出来る解説に逃げることが多かった。実務上はそれで問題ないにしてもこのまま厳密な理解から逃げているのも良くないなと感じたのでもう少し先の数学に取り掛かることにした。 巷には数学の学び直しについての記事が既にたくさんある。それに自分の場合は何かの受験に成功した!とか難関の資格を取得した!というような華々しい結末を迎えている状態ではない。そんな中で自分が何か書いて誰の役にたつかもわからないが、少なくとも自分と似たようなバックグランドを持つ人には意味のある内容になるかもしれないので、どの
今年もお世話になりました、すべて「あなた」のおかげ。 このブログのタイトルは、「わたしが知らないスゴ本は、きっとあなたが読んでいる」。そして、このブログの目的は、「あなた」を探すこと。ともすると似た本ばかり淫するわたしに、「それがスゴいならコレは?」とオススメしたり、twitterやfacebookやtumblrで呟いたり、「これを読まずして語るな!」と叩いたり―――そんな「あなた」を探すのが、このブログの究極の目的だ。 昨年までの探索結果は、以下の通り。 この本がスゴい!2010 この本がスゴい!2009 この本がスゴい!2008 この本がスゴい!2007 この本がスゴい!2006 この本がスゴい!2005 この本がスゴい!2004 昨年から始めたオフ会で、たくさんの気づきとオススメと出会いを、「あなた」からもらっている。目の前でチカラ強くプッシュしてもらったり、物語談義を丁々と続けたり
はてなブックマークのブックマーク数が多い順に記事を紹介する「はてなブックマーク年間ランキング」の2022年版を発表します。上位トップ100の記事をピックアップしました(集計期間:2021年12月11日~2022年12月10日)。 2022年 はてなブックマーク年間ランキング(2021年12月11日~2022年12月10日) 順位 タイトル 1位 【詳しすぎる2週間】親の死亡後にまずやること(行動チェックリスト付) 2位 逮捕にそなえる人生継続計画 - やしお 3位 150 分で学ぶ高校数学の基礎 4位 ゲームの勝敗でかんしゃくを起こす子どもにできることは大人げない大人になること|フィンランドワークショップomena|note 5位 【アメリカで話題】ただ座るだけ!股関節がみるみる柔らかくなる「90/90ストレッチ」 | ヨガジャーナルオンライン 6位 Amazonプライムビデオで観てほしい
私自身、物事を分かりやすく伝えるスキルを身に着けるため、手あたり次第に、いくつかノウハウ本を読んだり、YouTube動画を観たりしてきました。本記事では、本や動画から得られたノウハウや、私が普段の仕事で発見した個人的に使っているテクニックをまとめてみました。 0 本記事の最重要ポイント 本記事がストックの墓場に行ってもいいように、本記事の最重要ポイントだけ先に伝えておきます。 質問に答える時は、聞かれたことにシンプルに答える。 事実と解釈を分けて話す。 1 本記事で伝えたいメッセージ 1-1 コミュニケーション能力の苦手意識はノウハウで解決する ITエンジニアの裾野が広がるにつれて、SNSでも「コミュニケーション能力の低いITエンジニア」の話題をちらほら見かけるようになりました。いわく「これからはITエンジニアにもコミュニケーション能力が求められる」「プログラミングができるだけでは生き残れ
役立つYouTubeのチャンネルまとめ 数学、物理、アルゴリズム、プログラミング、などなど自分が使う技術に役立ちそうだな、困ったときによく見たなと思うチャンネルを紹介する。 取っ掛かり、ハマりがち、コツみたいな物が拾える。数学がメイン。随時更新していくつもり。 当たり前だけどちゃんと本も読んで勉強するんだぞ。 背景 YouTubeは視聴する登録チャンネルの数が増えると、チャンネルが埋もれて発掘困難になりがち (chrome拡張でできるチャンネルのフォルダ分け機能は、ぽちぽち登録するのも面倒で、そのフォルダの中から掘り出すのも難しい) モチベが上がる(おべんつよしたい)チャンネルを探してるうちに湧いてくる、わんにゃんコンテンツ(だいちゅき)に流され一日が終わるため、 モチベが上がる有用なチャンネルにすぐにたどり着くために、よく使うQiitaに列挙しておくことにした Streamや大学専用サイ
高校生のほけきよ少年にとって、得られる大学以上の物理や数学の情報はwebサイトだけでした。 物理や数学の専門書って高いんですよね。あと、大きな本屋じゃないと取り扱っていない。 今ではamazonでいろいろな書籍が手に入るようになりましたが、高いしどんな内容がかかれているかは分からないので、買うのもためらわれます。 そこで今日は 好奇心溢れる高校生 お金はない、単位が危ない、やる気に溢れた大学生 社会人になってから物理や数学を趣味で始めたい人 たちのために、無料で大学以上の内容を学べるサイト/サービスを紹介します! 1. 物理のかぎしっぽ 2. EMANの物理学 3. MITの物理学講義(Youtube) 4. 現代数学観光ツアー 物理のための解析学探訪 5. 数学:物理を学び楽しむために 6. 高校数学の美しい物語 まとめ ※ここでいう数学は「物理学のための数学」の範疇を超えません。 1.
3月2日からの政府からの小中高全国一斉休校の要請などを受け、EdTechやエンタメなど複数のサービスが期間限定で無償提供されています。ここでは無償提供が行われたオンラインサービスをまとめます。 経済産業省まとめサイト 新型コロナ感染症に伴う学校休業対策のためにEdTech関連各社の取り組みを以下にまとめている。 www.learning-innovation.go.jp 文部科学省 学習支援コンテンツポータルサイト 新型コロナウイルスに伴う臨時休業期間において、学習支援に利用可能なコンテンツサイトを公開している。 www.mext.go.jp 自習活用サービス・教材 教材名 概要 対象者 会員登録 無償提供期間 まなびwith 2019年度教材3月号をPDFで無料公開。ワークブック送付サービス(1人1冊まで)も提供 小学1年生~6年生 不要 3月2日~3月31日 電子図書館まなびライブラリ
はじめに Twitter、Qiita、Zenn...といろんなところから情報収集するのはいいのですが、それぞれの有益な情報をそれぞれのサイトにお気に入りとして保存しているので、必要な情報を探すだけで一苦労です。 ここで一覧にしてまとめておくことにしました。 ただし、特定の言語に依存するような記事はあえて排除しています。 皆さんにとっても有益な情報があると、この記事を公開して良かったなと思います。 また、皆さんのオススメの記事がありましたら、コメントなどで教えてください。 コミュニケーション 質問 質問は恥ではないし役に立つ https://qiita.com/seki_uk/items/4001423b3cd3db0dada7 新卒からの質問をソシャゲっぽい仕組みにしたら捗った話 https://qiita.com/ysktsuna/items/fced3a9515c8f585ca50 会
はじめに: 本講座は「機械学習ってなんか面倒くさそう」と感じている プログラマのためのものである。本講座では 「そもそも機械が『学習する』とはどういうことか?」 「なぜニューラルネットワークで学習できるのか?」といった 根本的な疑問に答えることから始める。 そのうえで「ニューラルネットワークでどのようなことが学習できるのか?」 という疑問に対する具体例として、物体認識や奥行き認識などの問題を扱う。 最終的には、機械学習のブラックボックス性を解消し、所詮は ニューラルネットワークもただのソフトウェアであり、 固有の長所と短所をもっていることを学ぶことが目的である。 なお、この講座では機械学習のソフトウェア的な原理を中心に説明しており、 理論的・数学的な基礎はそれほど厳密には説明しない。 使用環境は Python + PyTorch を使っているが、一度原理を理解してしまえば 環境や使用言語が
データサイエンティストを生業にする手段と実態について述べる。 途中、具体例・境界値の例として私個人の話もするが、なるべく一般性のある話をする。 この記事で言いたいことは具体的には4つだ。 プログラミングスクールをディスるなら代わりの入門方法を提供しようよ。 もう「未経験文系から3ヶ月でデータサイエンティストで一発逆転物語」を止めろ。*1 おじさんは人生逆転したいなら真面目にやれ。 若者はワンチャンじゃなくて、ちゃんと化け物になれよ。 この記事についてはパブリック・ドメインとして転載・改変・リンク記載を自由にしてよいです。 (続き書いた) a. 入門は辛いが… b. 思考停止でプログラミングスクールに通うな。 なろう系・始めてみよう系資料一覧 (最速・最短ルート用) まずは動かしてみよう。強くてニューゲームが体験出来るぞ! 入門以前の本 一般向け業界本 (AI業界と展望がわかる本) 技術者入
最初の1年で読むべき本を考える 私の統計学の理解はまだまだ初歩レベルに留まっていますが、昨日飲んでる時に「初心者向けの統計の本ってどういうのが分かりやすいですか」というようなことを訊かれて、「俺に訊かれてもあまり参考には……」とか思う一方、まだ初歩レベルの位置にいる人間だからこそ言える「この本が分かりやすかったよ論」ってのもあるよなと思ったので、現時点での読書感想みたいなものをメモしておきます。一昨年、統計の勉強を始めた頃の自分にむかって書いてる感じです。 理系の人とか、ある程度統計の理解ができている人からみれば、「本質的な理解のためにはもっと難しい本がいいよ」ってなるかも知れませんが、「いやそんな難しいの勧められても独学のモチベーションが続かねーよ」っていう立場でまとめておきますw ここでは、 統計の勉強はしたことがなく、標準偏差とか言われても意味分からない プログラミングも全くわからな
「この本にはお世話になったなぁ〜」 「今でもたまに読み返してます」 「マジでめちゃめちゃ影響受けた」 「そう、こいつが俺のエンジニア人生を変えやがったんだ...」 ↑「こんな本を紹介してください!」と社内チャットで投げてみたら、すんごいことになったのでそのリストをシェアさせていただきます。 ※推薦理由はあくまで推薦者による個人的な意見や思い入れたっぷりなので、それを踏まえてお楽しみください。 目次 アプリケーション/プログラミング ドメイン駆動設計 Java言語で学ぶデザインパターン入門 Pro Git BINARY HACKS Effective Java リバースエンジニアリング―Pythonによるバイナリ解析技法 なるほどUnixプロセス ― Rubyで学ぶUnixの基礎 リーダブルコード メタプログラミングRuby 第2版 Head First デザインパターン テスト駆動開発 C
こんにちは,学生エンジニアの迫佑樹(@yuki_99_s)です. 工学系の大学生なら絶対に触れるはずのフーリエ変換ですが,「イマイチなにをしているのかよくわからずに終わってしまった」という方も多いのではないでしょうか? 難しいのに加えて,教科書もちょっと不親切で,いきなり論理が飛躍したりするんですよね(僕の理解力の問題かもしれませんが) 僕がフーリエ変換について学んだ時に,以下のような疑問を抱きました. 出来る限り難しい式変形は使わずにこれらの疑問を解決できるようにフーリエ変換についてまとめてみました!! 多少厳密性を欠いても,とりあえず理解するという目的の記事なので,これを読んだあとに教科書と付き合わせてみることをおすすめします. それでは,いってみましょう!! 今回の記事は結構本気で書きました. フーリエ変換の公式 今回のゴールを確認するべく,まずはフーリエ変換及びフーリエ逆変換の公式
なぜ、微積分は役に立つのか 2023.11.27 Updated by Atsushi SHIBATA on November 27, 2023, 14:58 pm JST 今回紹介する書籍:『はじめての物理数学』永野 裕之(SBクリエイティブ、2017) 朝起きてから寝るまで、我々は何種類もの「数」を見ます。 私自身、朝起きるとネットやニュースで降水確率、予想気温のように気象にかかわる数、為替、海外の株式市場の指数など、いろいろな種類の数をチェックします。しばらく前なら、コロナウイルスの感染者数や増加傾向を表す指数を毎日のように確認していました。 自分を取り巻く環境を知るために、私たちはいろいろな「数」を確認します。そして数を手がかりにして、行動を決めます。現代を生きる私たちにとって「数」は、世界を知るための「目」としての役割を持っています。 現代人が日常的に見るこの種の数は、たいてい計
この記事の目的はタイトルの通り、子どもに「相対性理論って何?」と聞かれたときに説明できるために、かなりアバウトに相対性理論を解説したものです。 同時に、相対性理論を「まずは概略的にでも理解したい」という方にも有用な内容になっていると思います。 より理解を深めたい方は、こちらの記事にお進み下さい。 中学校で習う数学の範囲でアインシュタインの相対性理論を分かりやすく解説する 上のリンクの記事は中学で習う数学のみを使って、相対性理論というものを解説しています。使うのは中学の数学のみですが、扱っている現象は難しいですので、まずはこの記事でイメージを作っていただけれるとスムーズに進めると思います。 相対性理論とは? どんな現象が起きるの? 相対性理論の現象 結果1 光の速度よりも速く動けるものはない*2 結果2 光の速度に近い速さで動くものは、縮んで見える 結果3 光の速度に近い速さで動くものは、時
1. はじめに こんにちは、東京大学 3 年の米田と申します。この度は、ダイヤモンド社から『高校数学の基礎が 150 分でわかる本』という書籍を出版させていただくことになりました。高校数学の基礎を図解で超わかりやすく説明した本です。 【フルカラー図解】高校数学の基礎が 150 分でわかる本 - Amazon 発売日は 3 週間後の 2023/7/26 です。電子書籍版も同時期に出る予定です。本記事では、この本の内容や特徴について、簡単に紹介させていただきます。 2. この本はどういう本か 本書は、主に次のような方に向けた、高校数学の「超」入門書です。 高校数学をはじめて学ぶ方 数学を学び直したい方 日本ではたくさんの数学の本が毎週のように出版されています。しかしこの中の多くは、難しくて多数の人が挫折してしまうか、雰囲気でわかった気にはなるけど結局身に付かないかのいずれかです。 そこで本書は
50円で東大生が売ってたので買ってきました。 www.ryosuke-takano.net これは!! 東大生だから東京在住だよね?こんな遠い地方まで(中国地方)本当に交通費自己負担で学生さんが来てくれるんだろうか?(いやいや東大生だからもしかしてお金持ちのご子息かもしれない)ダメ元でとりあえずチャレンジ!ツイッターで問い合わせをしてみました。 依頼した内容は「小学2年の息子と数学を語ってほしい」 なんと即答で引き受けてくださいました。たぶんね、遠いし相手は子供だし最初は(ゲッ!)って思われたと思うんですよ。ブログの記事をいくつか拝見しましたがお若い方のノリで私とは全く接点はなさげですし。でも国内ならどこでも行くと書かれた以上断るわけにもいかないでしょうし引き受けてくださったんだと思います。 ダイレクトメールで日時の打ち合わせ、うちの息子が自閉症スペクトラムであることを含めどんな子であるか
※取りに行く話なのでまだ取ってません。 界隈ではコンピュータサイエンス(以下CS)を学ぶことが流行っていますが、これはとあるパパのとある一例です。どなたかの参考になれば。 こちらの通り申請致しました。 https://t.co/IDkVJAWjc2— Y (@wbspry) 2021年2月13日 誰? 事の経緯 なぜ大学でCS・数学を学びたいのか CS系学位を課す外資大企業たち CSできるマンへの憧れ 立ちはだかる数学の壁 dynamicなものよりstaticなもの ところで、CSって何? 選択肢と選択 なぜUoPeopleではなかったか 週次の人巻き込み課題が大変そう 単位移行が可能なのか(※当時は)よくわからなかった とはいえ なぜ帝京理工通信ではなかったか なぜJAISTではなかったか 学位授与機構との出会い 新しい学士への途(単位累積加算制度)とは 学位取得までの流れ そして単位集
---【追記:2022-04-01】--- 「基礎線形代数講座」のPDFファイルをこの記事から直接閲覧、ダウンロードできるようにしました。記事内後半の「公開先」に追記してあります。 --- 【追記ここまで】--- みなさん、はじめまして。技術本部 開発技術部のYです。 ひさびさの技術ブログ記事ですが、タイトルからお察しの通り、今回は数学のお話です。 #数学かよ って思った方、ごめんなさい(苦笑) 数学の勉強会 弊社では昨年、有志による隔週での数学の勉強会を行いました。ご多分に漏れず、コロナ禍の影響で会議室に集合しての勉強会は中断、再開の目処も立たず諸々の事情により残念ながら中止となり、用意した資料の配布および各自の自学ということになりました。 勉強会の内容は、高校数学の超駆け足での復習から始めて、主に大学初年度で学ぶ線形代数の基礎の学び直し 、および応用としての3次元回転の表現の基礎の理解
Study-AI株式会社は3月23日から、特設サイトとYouTube公式アカウントにおいて、中学生でも人工知能(AI)の勉強を目指せるとうたう「中学生から分かるAI数学講座」動画の無料配信を開始した。 本講座は、一般社団法人日本ディープラーニング協会(JDLA)が提供する「E資格」で出題される数式を読めるようになることを目的としており、中学校や高校の数学を予習(復習)するといった内容だ。 解説範囲は数式の読み方や計算方法で、数式の意味は解説に含まない。到達目標はΣやexpやlogなどの言葉が出てきても抵抗なく受け入れ、計算ができること。対象者はAIの勉強を進めたい人、高校数学を習っていない中学生。 制作意図としては、自分で勉強を進めたり講義を聞いたりするときに「教科書に出てくる数式が読めない」「見たこともない」ということがないように準備体操、予習の一助として作成したとしている。 気になる人
4. 公開にあたって ●まえがきに代えて 本書は 株式会社 セガ にて行われた有志による勉強会用に用意された資料を一般に公開するもので す。勉強会の趣旨は いわゆる「大人の学び直し」であり、本書の場合は高校数学の超駆け足での復習 から始めて主に大学初年度で学ぶ線形代数の基礎の学び直し、および応用としての3次元回転の表現の 基礎の理解が目的となっています。広く知られていますように線形代数は微積分と並び理工系諸分野の 基礎となっており、だからこそ大学初年度において学ぶわけですが、大変残念なことに高校数学では微 積分と異なりベクトルや行列はどんどん隅に追いやられているのが実情です。 線形代数とは何かをひとことで言えば「線形(比例関係)な性質をもつ対象を代数の力で読み解く」 という体系であり、その最大の特徴は原理的に「解ける」ということにあります。現実の世界で起きて いる現象を表す方程式が線形な振
私は高校入試で、数学以外の科目は 80~90点台でしたが、数学だけ55点でした……(合格者平均は約70点)。しかし試行錯誤の結果、定期テストで平均より少し上となり、評定平均4、模試偏差値65くらいを取れるようになりました。その方法について紹介します。(高校生記者・みかみ=3月卒業) なぜ苦手か分析してみたら 数学が苦手だった原因を分析してみました。「解けない問題の解答を丸暗記しようとしていたこと」「解答用紙やノートがうまく使えないこと」「暗記するなという言葉を曲解し、復習せず思考停止していたこと」とわかりました。そこで、主に次の4つの方法を実践してみました。 【1】自分の言葉に変えてみる まず、私には数学特有の言い回しが難しかったので、問われた内容を自分の言葉に変えて、問題集に解答の流れを書き込みました。そしてセルフレクチャーという方法で、問題を見て瞬時に答えが導き出せるようにしました。
習うより慣れろ、学ぶより真似ろ。 やりなおし数学シリーズ。いつもと違うアタマの部分をカッカさせながら、3週間で一気通貫したぞ。もとは小飼弾さんへの質問「数学をやりなおす最適のテキストは?」から始まる。打てば響くように、吉田武「オイラーの贈物」が返ってくる……が、これには幾度も挫折しているので、「も少し入りやすいものを」リクエストしたら、これになった。 本書の特徴は、「つながり」。アラカルト方式を改め、高校数学の体系を一本化しているという。なるほど、上巻の「数と式」の和と差の積の形に半ば強引に持ち込むテクは、下巻の積分の展開でガンガン使うし、図形と関数はベクトルと行列の基礎訓練だったことに気づかされる。ベクトルが行列に、行列が確率行列に、さらに行列がθの回転運動や相似変換に「つながっている」ことが「分かった」とき、目の前がばばばーーーっと広がり、強制覚醒させられる。 上巻 1章 数と式 2章
「他にこんなのがある」というのがあったら是非いっぱい教えてください! 歴史的に最も古くからある用途は「測量」でしょう。三角関数誕生のキッカケはまさに測量の必要性にありました。比較的日常生活でも見る機会がありそうな用途でしょうか。 ログハウス ケーキカット 震災時の家の傾き推定 現代では「波」としての用途が多いでしょうか。Twitter での様々な人のコメントを見ていても、 おっぱい関数 jpeg 画像 音声処理 といった具合に、波に関する話がかなり多いイメージです。これらの三角関数の使われ方を特集してみます。様々な分野に共通する三角関数の使い方のエッセンスを抽出したつもりですが、これでもかなり分量が多くなりました。摘み食いするような感覚で読んでいただけたら幸いです。 2. 三角関数の 3 つの顔 最初に三角関数には大きく 3 つの定義があったことを振り返っておきます。以下の記事にとてもよく
理数系ネタ、パソコン、フランス語の話が中心。 量子テレポーテーションや超弦理論の理解を目指して勉強を続けています! 先日、このブログの理数系書籍の紹介記事が200冊に達した。4分の3ほどが大学、大学院の教科書レベルの物理学書や数学書、残りがブルーバックスに代表されるような一般向けの本だ。 記事で紹介した物理学と数学の本は「書名一覧」でご覧いただけるほか、ブログの「記事一覧(分野別)」にまとめてある。また、最近読み始めた電子工学系の本の記事は「電子工学」のカテゴリーで検索できる。 物理や数学の教科書や専門書を読んだことがない人は次のように思っているかもしれないから、この膨大な読書体験で何が得られたか、僕がどう感じたかなど感想を書いておくのもいいかもしれない。 - これだけたくさんの本を読むと、どのようなことがどれくらいの深さで理解できるようになるのか? - いろいろな疑問が解決することで、自
歳末の候、何かとご多忙のことと存じます。 週刊はてなブログでは、毎週月曜にはてなブックマーク数ランキングを掲載しております。このたび、毎年末恒例の年間総合ランキングを集計いたしましたので、本記事にてご報告とさせていただきます。 また、新たな趣向として、2016年中にはてなブックマークで多くのコメントを獲得したり、ソーシャルでの流入が多かったりした注目記事を、はてなブックマークのカテゴリーごとにまとめてみました。2016年を振り返る一助となれば幸いです。 はてなブログ2016注目記事(はてなブックマークのカテゴリー別) はてなブログ2016トップ100 ― 年間総合はてなブックマーク数ランキング 関連記事(2014年、2015年、はてなニュース) はてなブログ2016注目記事(はてなブックマークのカテゴリー別) はてなブックマークのカテゴリー(暮らし、世の中、政治と経済、学び、テクノロジー、
https://anond.hatelabo.jp/20180307150402 諦めるのが早すぎる。高い目標の下方修正はいつでもできるが、京大をまた目指しはじめても低い目標を上方修正するのはきついぞ。 年間1-2人だけ京大に行く公立高校に通い、高校1年の4-12月に個別指導の英語だけを週2時間/高校3年の9月-本番まで河合塾の京大数学と京大英語コースを受講、最後の冬休みは河合塾の京大演習コースも受けた。それ以外は独学。結果京大法学部に現役合格した。学校に特進コースはなかったし、クラスは文系と理系の二分のみ。部活には休まず通い(運動系だったが大会は存在していなかった)、高校3年の夏休みとか1日2時間くらいしか勉強してなかった(結果死んだので河合塾行き)。その際のノウハウを共有するから参考にしろ。 基本方針学校の定期試験は無視しろ。残り2年間で京大の学力に到達することだけを考えろ。定期試験で
0の0乗の正解がネット検索しても見つからないので作成した。 更新:2019/11/29|公開:2015/11/21 教育・学習 0の0乗はいくらですか? 正しい解答を答えられますか? 事の発端は、昨年2月の読売新聞に「0に0をかけると0だが、0を0乗すると1になる」と書き始め、学力低下について批評した記事が出回ったところから始まります。これについて、「バカなことを言うな」「間違っていますよ」「最近はそう教えているの?」・・・などとネット上で論争が爆発しました。 この0の0乗事件から、もうすぐ2年になろうとしているので、さすがに誰かが正してくれていると思いネット検索してみたのですが、いろんな言い分は多々見受けられましたが、正しい解答に言及しているサイト(ページ)は見つからなかったので、僭越ながらここで正しい解答を記述しておきたいと思います。この機会に「0の0乗」について正しく理解いただければ
高校数学で複素数を習った際、 「何これ?何の意味があるの?」 という疑問を持った人は多いのではないでしょうか。 それまでは、 「2次方程式は、解を持つ場合と持たない場合がある」 という話だったのに、それを無理矢理 「2乗すると-1になる数を考えて解いてみましょう」 と言って計算させて、何なのこれは?という話です。 確かに、 「虚数単位『i』は、普通の文字だと思って計算し、ただし、2乗すると-1になる」 という計算ルールに従って計算すれば、式変形はできるのですが、 なぜそんな計算をする必要があるのでしょうか? そこで、 「数の概念を拡張してまで解きたい二次方程式」 として、数列の三項間漸化式を考えてみたいと思います。 複素数というものを新たに導入する動機づけがほしい 「何の役に立つのか?」 を簡単に説明する事例を挙げるのは、結構難しいです。 三次方程式の解の公式(カルダノの公式)で必要になる
はじめまして。mayocornです。 先日のABC281で青コーダーになりました! 経歴 20代の主婦。旦那は競プロやってないです。 中学卒業→高校入学→高校中退→バイトを転々とする(ITに関してはSESで半年ほど働いた経験あり)→今の住所に引越してきてからは無職 趣味はゲームで、最近やっているタイトルはファイアーエムブレムエンゲージ、Splatoon3です。音ゲーやカードゲームに熱中してた時期もありました。CHUNITHMは旧レートでベスト枠15.3くらい。でものめりこむほどお金がかかるのでやめました。競技プログラミングは何問解いても無料なので続けられてます。 学力に関して話すと、高校数学は確率、論理と集合がちょっとわかるくらいで三角関数、微分積分、行列あたりは全然分かりません。青パフォーマンスをとるのにこのへんの知識が必要になったことはなかった気がします。(私が参加した回の中では) 競
数学市民@Mathpedia運営 @Infinity_topoi 高3の受験生を見ていた時、計算力の低さを見かねて中1の計算問題集を解かせたことがあった。「これくらい出来るよ」って最初は笑っていたが、制限時間をつけてやるとボロボロだった。流石にショックを受けていたが、「これくらいは出来る」と思って基礎的な事をやり直せないのはよくあることだと思う。 数学市民@Mathpedia運営 @Infinity_topoi それからひたすら数か月基礎計算。満点以外は全部やり直しで徹底的にやった(何度も泣かせてしまった)。そのあともう一度高校数学をやってみたら、すんなり出来るようになって、しまいには「センター数学って簡単じゃないすか?」とか言い出した(無事現役合格した)。計算力って本当に大事と思った一例。 数学市民@Mathpedia運営 @Infinity_topoi この生徒の場合でもそうだけど、計
ヱヴァンゲリヲン新劇場版:Q 冒頭6分38秒 宇宙考証の解説 平成24年11月23日 初版 平成24年11月26日 第1.1版 文章と数値を修正 平成24年12月 6日 第1.2版 文章と図の修正と「ヒルの方程式」に追記 平成25年 4月24日 第Ω版 「今後の課題」に追記.これにて最終版とする. 平成26年 9月 5日 第Ω-β版 「Q」地上波初放送に向けて語弊のある記述に補足 1.はじめに このサイトは「ヱヴァンゲリヲン新劇場版:Q」の冒頭6分38秒について,幾つかのシーンがどのような物理法則に基づいているのか,それが実際に成り立つのかどうか,と言うことを,実際の宇宙工学の立場から考察を行うものです. このサイト及び内容は,本サイトの筆者の独断によるものとなっています. 従って,実際の設定とは異なる可能性があることと,本サイトに記載されている全ての事項についての文責は本サイトの著者にあ
自分と同じようなバックグラウンドで「機械学習周辺の数学まわりの勉強をしたい」という人の助けに少しでもなれればと思い、半年間の勉強の軌跡を公開することにした。 ● 前提 ・数学の勉強と言える勉強は高校数学で言う所の数II・Bまでしかやってこなかった。 ・数学が超得意だったかというとそういうわけではなく、まあ普通なライン。 ・大学は情報系で文理一緒だけど、正直大学数学らしい数学はあまりやってこなかった。 ・社会人になって以来ずっと数学コンプレックスで「大学の時もっと理系の勉強をしておけばよかった」と後悔する日々だった。 ・「とにかくツールとか沢山触りまくって慣れた方が良い」という意見も沢山頂いていたのだけど、 – やはり専門の文献を読むとブワーッと数式が出て来て「うっ」となる自分が情けなく感じる経験をした – このまま勉強しないで年をとった後に「あの時やっておけば」という後悔はしたくなかった
講演のご依頼をお受けします。 小・中・高の同級生が経営する株式会社Tスポットの社員さんに向けて、『大人が数学を学び直すには』というテーマで講演をさせていただきました。 講演で使ったスライドの一部をご紹介します。 料理に喩えるなら、「数学者になる」というのは一流店のコックになるようなものです。このレベルに達するには才能が必要でしょう。対して、「大学入試を突破する」や「仕事や生活に(数学を)活かす」というのは、冷蔵庫の残り物でパッと美味しいものを作ってしまうというレベルです。これは、最初から簡単にできることではないかもしれませんが、素材についての確かな知識を持ち、調理法についてその意味が分かりさえすれば、誰にでも到達できるレベルです。 《参考》 日本数学検定協会の会長やNHK高校講座「数学基礎」の講師も務められた秋山仁先生の著作『数学に恋したくなる話 』の中から「理系大学進学に必要な4つの能力
こういう人間です ・ 文系(英文学科) ・ Webエンジニア ・ 統計を勉強中モチベーションここ2年ほど統計を勉強しているのですが、そこで毎回立ちふさがるのが数学の壁でした。わたしは文系ということもあって数ⅡB(しかも途中まで)しか履修していなかったため、微分積分や線形代数などが出てくると理解することが難しく時間がかかってしまいます。 でももっと統計を知りたいし理解したい 😭 という気持ちをずっと感じていて今回数学をやり直すことにしました。 高校3年分と考えるとなかなか決心するのに時間がかかりましたが、やってよかったと思います。スケジュール感や実際使った本などを共有することで同じような方の参考になればよいなあ、と思います。 実際使用した本 ・ 講座■ よくわかる数学シリーズ 主にMY BESTシリーズを使用しました。カラーで説明もわかりやすく、目にも心にもやさしい仕上がりになっております
今の場合は A さんが 31 歳の場合のストーリーでしたが、A さんが 20 歳~ 35 歳のうちのどの年齢であったとしても、似たようなストーリーで必ず 4 回の質問で当てることができます!(他の例も是非考えてみてください。) ちなみに、このような「真ん中で切ってどちらかに絞って行く」タイプのアルゴリズムには二分探索法という名前がついています。応用情報技術者試験でも頻出のテーマですので馴染みのある方も多いと思います。 1-2. つまり、アルゴリズムとは 上の年齢当てゲームという問題では、相手の年齢を当てる「方法・手順」を二分探索法に基づいて導きました。このようにアルゴリズムとは、 問題を解くための方法・手順 のことです。さて、アルゴリズムと聞くと「コンピュータ上で実装されたプログラム」のことを思い浮かべる方も多いと思いますが、必ずしもコンピュータと関係がある必要はなく、日常生活でも多々登場
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く