並び順

ブックマーク数

期間指定

  • から
  • まで

41 - 80 件 / 7315件

新着順 人気順

Kerasの検索結果41 - 80 件 / 7315件

  • 機械学習/ディープラーニング初心者が2018年にやったこと、読んだ論文 - Qiita

    Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 2018年もいよいよ本日が最後となりました。皆さんいかがお過ごしでしょうか。この記事では機械学習/ディープラーニング初心者だった自分が2018年にやったことをまとめていきたいと思います。ポエムじみた記事になってしまいましたが、何らかの参考になれば幸いです。 2018年のBefore-After Before 今年(4月)ぐらいまで機械学習の「き」の字も知らなかった。k-Nearest Neighbor?Support Vector Machine?なにそれ美味しいのってレベル 昔統計をやっていたので、ロジスティクス回帰ぐらいは知っていた

      機械学習/ディープラーニング初心者が2018年にやったこと、読んだ論文 - Qiita
    • PythonとKerasを使ってAlphaZero AIを自作する | POSTD

      自己対戦と深層学習でマシンにコネクトフォー(Connect4:四目並べ)の戦略を学習させましょう。 この記事では次の3つの話をします。 AlphaZeroが人工知能(AI)への大きなステップである2つの理由 AlphaZeroの方法論のレプリカを 作って コネクト4のゲームをプレイさせる方法 そのレプリカを改良して他のゲームをプラグインする方法 AlphaGo→AlphaGo Zero→AlphaZero 2016年3月、DeepmindのAlphaGo(アルファ碁)が、囲碁の18回の世界王者、李世乭(イー・セドル)との五番勝負で、2億人の見守る中、4-1で勝利しました。機械が超人的な囲碁の技を学習したのです。不可能だとか、少なくとも10年間は達成できないと思われていた偉業です。 AlphaGo 対 李世乭の第3局 このことだけでも驚くべき功績ですが、DeepMindは、2017年10月、

        PythonとKerasを使ってAlphaZero AIを自作する | POSTD
      • ディープラーニングの応用のための具体的方針まとめ - HELLO CYBERNETICS

        はじめに 目標の設定と指標の決定 目標の設定 指標の決定 評価指標に対する最低限の知識 機械学習における知識(補足) ニューラルネットワークの学習 最初に使うニューラルネットワーク 時間的にも空間的にも独立である複数の特徴量を持つデータ 空間の局所的な構造に意味のある多次元配列データ(例えば画像) 時間的な変動に意味のあるデータ(例えば音声、自然言語) ニューラルネットワークの細かい設定 ユニットの数と層の数 正則化 活性化関数 ドロップアウト バッチ正規化 学習の早期終了 性能が出ない場合 データの追加収集 ニューラルネットの設定をいじる 用いるニューラルネット自体を変更する 新たなニューラルネットワークの考案 コードを書くにあたって データ成形 結果を記録するコード フレームワークの利用 フレームワークの選択 ChainerとPyTorch TensorFlow Keras 最後に は

          ディープラーニングの応用のための具体的方針まとめ - HELLO CYBERNETICS
        • 【Day-17】DeepLearning系ライブラリ、『Keras』の使い方まとめ(2.x対応版) - プロクラシスト

          【最終更新 : 2017.12.17】 ※以前書いた記事がObsoleteになったため、2.xできちんと動くように書き直しました。 データ分析ガチ勉強アドベントカレンダー 17日目。 16日目に、1からニューラルネットを書きました。 それはそれでデータの流れだとか、活性化関数の働きだとか得るものは多かったのですが、Kerasと言うものを使ってみて、何て素晴らしいんだと感動してしまいました 今まで苦労して数十行書いていたものが、わずか3行で書ける! 正直、スクラッチで書く意味って、理解にはいいけど研究や分析には必要あんまないんですよね。車輪の再発明になるし。 と言うわけで、使えるものはどんどん使っていこうスタンスで、今日はKerasの紹介です! Tutorial+気になった引数を掘り下げて補足のような感じで書いています。 ちなみに、各部のコード以下をつなぎ合わせるとmnistの分類器が動くよ

            【Day-17】DeepLearning系ライブラリ、『Keras』の使い方まとめ(2.x対応版) - プロクラシスト
          • Awesome Python:素晴らしい Python フレームワーク・ライブラリ・ソフトウェア・リソースの数々 - Qiita

            Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? 元記事: Awesome Python Awesome List in Qiita Awesome Ruby Awesome Java Awesome JavaScript Awesome Node.js Awesome Go Awesome Selenium Awesome Appium 管理パネル 管理インタフェース用ライブラリ ajenti - サーバ用管理パネル. django-grappelli - Django 管理インターフェースのためのジャズスキン. django-jet - 改良された機能を備えた Django 管理イ

              Awesome Python:素晴らしい Python フレームワーク・ライブラリ・ソフトウェア・リソースの数々 - Qiita
            • AI・Python活用レシピ100選 - Qiita

              ※ 一部ガイドラインに反する内容がありましたので、該当箇所を修正のうえ再投稿しております。 はじめに Axross は、エンジニアの"教育"と"実務"のギャップに着目し、「学んだが活用できない人を減らしたい」という想いで、ソフトバンク社内起業制度にて立ち上げたサービスです。 現役エンジニアによる実践ノウハウが"レシピ"として教材化されており、実際に動くものを作りながら、具体的な目的・テーマをもってプログラミングを学ぶことができます。 今回は、Axross運営が厳選した『AI・Python活用レシピを100選』をご紹介します。是非、みなさまのAIやPython学習の参考にしてみてください。 Axross:https://axross-recipe.com 公式Twitter:https://twitter.com/Axross_SBiv 基礎 スクレイピング 01 . JUMPの掲載順をスク

                AI・Python活用レシピ100選 - Qiita
              • Deep Learning リンク集 - 人工知能に関する断創録

                乗るしかないこのビッグウェーブに Deep Learning(深層学習)に関連するまとめページとして使用する予定です。Deep Learningに関する記事・スライド・論文・動画・書籍へのリンクをまとめています。最新の研究動向は全然把握できていないので今後研究を進めるなかで記録していきたいと思います。読んだ論文の概要も簡単にまとめていく予定です。本ブログでは、当面の間、Theanoを使って各種Deep Learningアルゴリズムを実装していきたいと思います。 関連ニュースなどはTwitterでも流しているので興味があったらフォローしてください。 すべてに目が通せず更新が追いついていません。私のはてなブックマークで[Deep Learning]というタグを付けて登録しています。まったく整理できていませんがご参考まで。 Theano編 TheanoをWindowsにインストール(2015/1

                  Deep Learning リンク集 - 人工知能に関する断創録
                • 2023年版:実務データ分析を手掛けるデータサイエンティスト向け推薦書籍リスト(初級6冊+中級8冊+テーマ別15冊) - 渋谷駅前で働くデータサイエンティストのブログ

                  (Image by wal_172619 from Pixabay) 去年で恒例の推薦書籍リストの更新は一旦終了したつもりだったんですが、記事を公開して以降に「これは新たにリスト入りさせないわけにはいかない!」という書籍が幾つも現れる事態になりましたので、前言撤回して今年も推薦書籍リストを公開しようと思います。 初級向け6冊 実務総論 データサイエンス総論 R・Pythonによるデータ分析プログラミング 統計学 機械学習 中級向け8冊 統計学 機械学習 テーマ別15冊 回帰モデル PRML 機械学習の実践 Deep Learning / NN 統計的因果推論 ベイズ統計学 時系列分析 グラフ・ネットワーク分析 データ基盤 コメントや補足説明など 完全なる余談 初級向け6冊 今回は新たに加わったテキストがあります。 実務総論 AI・データ分析プロジェクトのすべて[ビジネス力×技術力=価値創出

                    2023年版:実務データ分析を手掛けるデータサイエンティスト向け推薦書籍リスト(初級6冊+中級8冊+テーマ別15冊) - 渋谷駅前で働くデータサイエンティストのブログ
                  • Udemyで夏の大キャンペーン開催! はてなブロガーも受講した、Python・機械学習・人工知能など最先端スキルを学べる講座を5つピックアップ - はてなニュース

                    お盆休みが明けてもう8月下旬。秋に向けて自分が学んでみたいことや身に付けておきたい技術などを見つけ始めるにはよいタイミングです。そこで、オンライン学習プラットフォーム・Udemy(ユーデミー)のオンライン講座をチェックしてみてはいかがでしょうか。 Udemy(ユーデミー)公式サイト Udemyの講座は一度購入すれば受講に期限はなく、PCでもスマートフォンでもデバイスを問わず見られるので、ちょっとした隙間の時間を有効に活用可能。必要な時に必要な講座を選べます。はてなブログを使って、受講内容のまとめや振り返り、学んだことのメモを書いている方も多くいらっしゃいます。今回はUdemyの数ある講座の中から、はてなブログユーザーさんの声も交え、おすすめの講座を5つピックアップしました。 Udemyでは8月30日(金)午後3時59分まで、対象の講座が1,200円から受講できる大セールが実施されています!

                      Udemyで夏の大キャンペーン開催! はてなブロガーも受講した、Python・機械学習・人工知能など最先端スキルを学べる講座を5つピックアップ - はてなニュース
                    • OSSベースの機械学習が強い理由

                      英語版はこちら。 TensorFlowの登場以降、OSSベースの機械学習の盛り上がりは加速しています。Kerasの作者のFrançois Cholletさんの言葉が、この状況を非常に端的に表しています。これだけでも十分だとは思いますが、この記事では、なぜオープンソースの機械学習が強いのか、最近のどういった流れがあるのかを整理したいと思います。 tl;dr機械学習やDeep Learningのフレームワークが充実してきた論文が査読前に公開され、他社も簡単にアルゴリズムの検証ができるようになった多くのプレーヤーの参戦により、アカデミアでの機械学習の研究がレッドオーシャン化した他社にないアルゴリズムで一発勝負、実装は秘密、というアプローチが厳しい牧歌的な時代5年前10年前の世界では、先端の機械学習に取り組んでいるのは大学などの研究室、大企業の研究所や一部の先進的な企業がほとんどでした。特に、ラベ

                        OSSベースの機械学習が強い理由
                      • データサイエンティスト含むデータ分析職の仕事がつらい4つの理由:洋の東西を問わずつらみは同じらしい - 渋谷駅前で働くデータサイエンティストのブログ

                        (Image by Pixabay) 某所でバズっていたこの記事ですが。 もう読んだ瞬間に「うわー、これ完全に洋の東西を問わずデータ分析業界だとどこでも見られる、業界つらみあるあるだなー」という感が湧いてきて、こみ上げてくる涙が押さえきれませんでした(嘘)。という軽口はさておき、実際にほぼ同じ内容の愚痴をUSでデータサイエンティストとして働いていた知人からも直に聞いたことがあるので、個人的にもかなり説得力のある話だなと思いました。 この記事の若干嫌なところは「データサイエンティストたちはいつでも転職活動をしている、何故ならどこの職場に行っても以下のつらみがあるからだ」という書き方をしている点。いや、データサイエンティスト含むデータ分析職が全員常に転職活動しているかというとさすがに違うだろうと思いますが、「それくらいつらいんですマジ勘弁して下さい」と言われたら頷かざるを得ないのもまた事実かな

                          データサイエンティスト含むデータ分析職の仕事がつらい4つの理由:洋の東西を問わずつらみは同じらしい - 渋谷駅前で働くデータサイエンティストのブログ
                        • 実務の専門家として機械学習や統計分析を手掛けたい人にオススメの書籍初級5冊&中級8冊+テーマ別11冊(2020年2月版) - 渋谷駅前で働くデータサイエンティストのブログ

                          (Image by Pixabay) この記事は以下のオススメ書籍リスト記事のアップデートです。 毎回の断り書きで恐縮ですが、この記事では「データサイエンティストや機械学習エンジニアなどデータ分析の実務の専門家として」*1機械学習や統計分析を手掛けていきたいという、主に初級ないし中級ぐらいのスキルレベルの人たちにお薦めしたい書籍を、初級向け5冊・中級向け8冊及び細かいテーマ別に11冊、それぞれ挙げていきます。スタンスとしては相変わらず「当座の最終到達点を『中級』に置いた時に最初に読んで内容をマスターしておくべき書籍」を初級に置いているので、世の中のこの手のお薦め書籍リストに比べると若干ハードな内容のものが初級向けに多いかもしれません。 後はちょっと気が早いかもしれませんが、機械学習パートに関しては「AutoML時代にあっても実務の専門家であれば知っておくべき知識」を収めた書籍を選んでおきま

                            実務の専門家として機械学習や統計分析を手掛けたい人にオススメの書籍初級5冊&中級8冊+テーマ別11冊(2020年2月版) - 渋谷駅前で働くデータサイエンティストのブログ
                          • 【2021年】AWS全サービスまとめ | DevelopersIO

                            こんにちは。サービスグループの武田です。このエントリは、2018年から公開しているAWS全サービスまとめの2021年版です。 こんにちは。サービスグループの武田です。 このエントリは、2018年から毎年公開している AWS全サービスまとめの2021年版 です。昨年までのものは次のリンクからたどってください。 AWSにはたくさんのサービスがありますが、「結局このサービスってなんなの?」という疑問を自分なりに理解するためにまとめました。 今回もマネジメントコンソールを開き、「サービス」の一覧をもとに一覧化しました。そのため、プレビュー版など一覧に載っていないサービスは含まれていません。また2020年にまとめたもののアップデート版ということで、新しくカテゴリに追加されたサービスには[New]、文章を更新したものには[Update]を付けました。ちなみにサービス数は 205個 です。 まとめるにあ

                              【2021年】AWS全サービスまとめ | DevelopersIO
                            • pythonの環境構築戦争にイラストで終止符をどうやら打てない - Qiita

                              はじめに Pythonの環境構築は僕にとって、戦争でした。 如何せんツールが多すぎます。 インターネットで調べるとざっと挙げるだけで 元から入っているpython3 元から入っているpython3 + venv pyenv pyenv + pyenv-virtualenv pyenv + venv anaconda docker + python docker + anaconda ... 以上のような組み合わせが山程出てきます。 よく最近のゲームのキャラメイキングの 「組み合わせは無限大!」を思い出します。 この記事では、それぞれの環境構築の概念をイラスト画像でまとめようと思います。 環境構築のコマンド自体は取り扱わないためご注意下さい。 追記 2019/11/07 本記事はPython初心者による「概念のみ」に関する説明のため、ベストな環境構築や、すべて正確かつ詳細な内容は含んでないで

                                pythonの環境構築戦争にイラストで終止符をどうやら打てない - Qiita
                              • ビーフストロガノフはどのくらい強いのか - Qiita

                                # !wget https://dl.fbaipublicfiles.com/fasttext/vectors-crawl/cc.ja.300.vec.gzで落とせます model = gensim.models.KeyedVectors.load_word2vec_format('cc.ja.300.vec.gz', binary=False) repat = re.compile(r'^[あ-ん\u30A1-\u30F4\u4E00-\u9FD0]+$') vocab_list = [w for w in list(model.vocab.keys())[10000:50000] if len(w) > 2 and repat.fullmatch(w) and w[-1] != 'っ' and w not in list(ww_df.word) and w not in list(sw

                                  ビーフストロガノフはどのくらい強いのか - Qiita
                                • IT未経験からMLエンジニアになるまでの2年半でやったこと - MLaaSS - Machine Learning as a Self-Satisfaction

                                  はじめに 自身の転職活動にあたり皆さんの転職エントリが非常に参考になったので、私も同じ境遇の方の参考になればと思い、書き残すことにしました。(ただ、本当に私と似た境遇の方にはなかなかリーチしづらい気がしていますが・・・) TLDR; 30歳でIT未経験からMLエンジニアに転職 約2年半独学で勉強(ほとんどkaggleしてただけ) 無関係に思えた現職での経験もなんだかんだ転職で役に立った 目次 自己紹介 現職について 転職の理由 勉強したこと 転職活動 終わりに 1.自己紹介 かまろという名前でTwitterなりkaggleなりをやっています。kaggleでは画像やNLPといったdeep learning系のコンペを中心に取り組んでおり、2019年の9月に金メダルを獲得しMasterになることができました。 恐らくここが他の転職エントリを書かれている方々と大きく異なる点かと思うのですが、現職

                                    IT未経験からMLエンジニアになるまでの2年半でやったこと - MLaaSS - Machine Learning as a Self-Satisfaction
                                  • 自然言語処理の前処理・素性いろいろ - Debug me

                                    ちゃお・・・† 舞い降り・・・† 先日、前処理大全という本を読んで自分なりに何か書きたいなと思ったので、今回は自然言語処理の前処理とそのついでに素性の作り方をPythonコードとともに列挙したいと思います。必ずしも全部やる必要はないので目的に合わせて適宜使ってください。 前処理大全[データ分析のためのSQL/R/Python実践テクニック] 作者:本橋 智光技術評論社Amazon 前処理 余分な改行やスペースなどを除去 with open(path) as fd: for line in fd: line = line.rstrip() アルファベットの小文字化 text = text.lower() 正規化 (半角/全角変換などなど) import neologdn neologdn.normalize('ハンカクカナ') # => 'ハンカクカナ' neologdn.normalize

                                      自然言語処理の前処理・素性いろいろ - Debug me
                                    • 転職したいエントリです。プログラマとして拾ってください

                                      どうもどうも。古都ことです。転職したい気分になってきたので書きます。 なおこの記事は、転職先が決まるか、諦めるか、反応がなかったら消します。この記事が残っている間は連絡待ってます。(2019/07/25追記 残しておきます) 希望条件 自分の知識や技術をより活かせる職場を探しています。拾ってください。 勤務先:できれば大阪周辺(豊中市から近いとかなり良い)遠いようならリモートワーク可給料:手取り25万は欲しい勤務時間:普通でもフレックスでも業務内容:可能ならばウェブ系がいいです(フロント/サーバ/バック問わず)新しい技術や新しい試みができる、挑戦的な内容開始:8月以降?備考:まだ退職してないです 連絡先 連絡は締め切りました プライベートでの実績 大雑把にはGitHub見てもらえばいいと思いますここと https://github.com/kotofurumiyaここ https://gi

                                        転職したいエントリです。プログラマとして拾ってください
                                      • Kaggle参戦記 〜入門からExpert獲得までの半年間の記録 & お役立ち資料まとめ〜 - ML_BearのKaggleな日常

                                        これはなに? デジタルマーケター 兼 プロダクトマネージャー 兼 データアナリスト (肩書長い…) の私が Kaggle に挑戦した約半年間の記録です。現時点で2つのコンペに真面目に取り組んで2つの銀メダル(入賞)を獲得出来ています。 Kaggle挑戦期間を通して、有識者の素晴らしい資料に助けられたのでとても感謝しています。同じような志を持つ方に自分の記録が少しでも役に立てばと思い、有用な資料のリンク集に私のKaggle参戦記ポエムをつけてまとめてみました。 自分の得意領域で勝負しようと思ってテーブルデータのコンペばかり選んでいるのでDeepLearning系の話は全然ないです、すみません。 目次 プロローグ Kaggleへの興味の芽生え 初参戦 → 即撤退 ガチ参戦に向けた修行 初ガチコンペデビュー 初ガチコンペ…、のはずが。 初ガチコンペ参戦 ベースモデル作成 特徴量エンジニアリング

                                          Kaggle参戦記 〜入門からExpert獲得までの半年間の記録 & お役立ち資料まとめ〜 - ML_BearのKaggleな日常
                                        • 深層強化学習でシステムトレードをやる時に役に立ちそうな資料まとめ - ニートの言葉

                                          Photo via Visual Hunt 少し前のことですが、AlphaGoという囲碁の人工知能プログラムがイ・セドル九段に勝利したことで話題になりました。*1 また、一部のゲームにおいて「DQN(Deep Q-network)」が人間よりも上手くプレイするようになったというニュースも話題になっていましたね。*2 今回はこれらの事例で使われている「深層強化学習」という仕組みを使って、FXのシステムトレードができないかと思い、調べてみました。 注意:強化学習もFXも勉強し始めたばかりなので、色々間違っている箇所があるかもしれません。ご指摘いただけると幸いです。 今回の内容 1.強化学習について 1-1.強化学習 1-2.Reinforcement Learning: An Introduction (2nd Edition) 1-3.UCL Course on RL 1-4.強化学習につい

                                            深層強化学習でシステムトレードをやる時に役に立ちそうな資料まとめ - ニートの言葉
                                          • 時系列予測で使えるpythonライブラリ一覧 - ざこぷろのメモ

                                            本記事では、時系列予測に利用できるpythonのライブラリの使い方について説明をします。 パッとライブラリを使うことを目指すため具体的なアルゴリズムの説明は省きます。 ※説明が間違えている場合があればご指摘いただけると助かります。 目次 利用データ ライブラリ Prophet PyFlux Pyro Pytorch Lightgbm 補足:Darts まとめ ソースコード このブログで記載されているソースコードはGitHubに上げておいたのでもしよろしければ参考にしてください。 github.com 利用データ 今回用いるデータはkaggleのM5 Forecasting - Accuracyと呼ばれるコンペティションで利用されたデータを用います。 作成したランダムなデータよりも実データのほうが予測をしている感があるからです。 予測に使うデータはwalmartの売上データです。 下図はその

                                              時系列予測で使えるpythonライブラリ一覧 - ざこぷろのメモ
                                            • 深層学習 を 用いた 異常値検知 手法まとめ 〜 (Denosing) AutoEncoder, LSTM, TDA(Topological Data Analysis) + CNN - Qiita

                                              オーソドックス な アプローチ(一般的手法) まず は、以下 が よくまとまっている。 株式会社クロスコンパス・インテリジェンス(2016.10.5)「NVIDIA GPU TECHNOLOGY CONFERENCE JAPAN 2016 Industry Deep Learning」 異常値予測 を 行う アプローチ としては、以下 が 一般的な考え方 の ようだ。 (データ量の多い)正常時のデータ挙動の特徴パターンを学ばせて、 新規データが上記の特徴パターンから乖離している場合を、異常とみなす 上記のアプローチをとる理由 は、「異常発生時のデータ」の取得可能件数 は、「正常時のデータ」 に 比べて、取得できるデータの件数 が 圧倒的に少ない から である。 上記のスライド で 挙げられている AutoEncoderモデル や LSTMモデル を 採用し、 AutoEncoderモデル

                                                深層学習 を 用いた 異常値検知 手法まとめ 〜 (Denosing) AutoEncoder, LSTM, TDA(Topological Data Analysis) + CNN - Qiita
                                              • 【Python】🍜機械学習で「隠れた名店」を探してみた。(そして実際に行ってみた)🍜 - Qiita

                                                1.簡単な概要 この記事では都内ラーメン屋の食べログ口コミを使って隠れた名店をレコメンドで発掘するやり方を解説していきます。 私自身🍜が大好きで昔は年間100杯以上食べ歩いてきた自称ラーメンガチ勢です。しかしながら、直近の健康診断にひっかかり、医者からドクターストップをかけられてしまいました。。。 行き場をなくしたラーメン熱を発散すべく機械学習でラーメンレコメンド(隠れた名店をレコメンドで発掘)に挑戦してみることにしました。 今回は、集大成として、Word2vecでモデリングしたmodelを使って隠れた名店をガチで発掘し、実際にそのお店に行って確かめるところまでやります! 有名店のラーメンに対して類似度が高いラーメン店を探すイメージです。 techgymさんのブログに掲載いただきました!ありがとうございます。 【人工知能の無駄遣い?】AIプログラミングの面白記事をまとめてみました。 2.

                                                  【Python】🍜機械学習で「隠れた名店」を探してみた。(そして実際に行ってみた)🍜 - Qiita
                                                • JavaScript エンジニア向け: 知識ゼロから tensorflow.js で機械学習入門 - mizchi's blog

                                                  この週末で機械学習を勉強した結果として、JavaScript エンジニア向けにまとめてみる。 自分が数式見て何もわからん…となったので、できるだけ動いてるコードで説明する。動いてるコードみてから数式見たら、多少気持ちがわかる感じになった。 最初に断っておくが、特にJSを使いたい理由がないなら python で keras 使ったほうがいいと思う。tensorflow.js が生きる部分もあるが、学習段階ではそこまで関係ないため。 追記: 最初 0 < a < 1.0 0 < b < 1.0 で三角関数 Math.sin をとっていて、これだと三角関数の一部の値しか使っておらず、線形に近似できそうな値を吐いていたので、次のように変更して、データも更新した。 // 修正前 const fn = (a, b) => { const n = Math.cos(a) * b + Math.sin(b

                                                    JavaScript エンジニア向け: 知識ゼロから tensorflow.js で機械学習入門 - mizchi's blog
                                                  • 機械学習初心者が約10ヶ月でメダルより大切なものを獲得できた話【kaggle Advent Calendar 17日目】 - ギークなエンジニアを目指す男

                                                    本記事は、kaggle Advent Calendar 2018の17日目の記事です。 qiita.com 何を書くか直前まで悩んでいましたが、16日に参加したAIもくもく会の中で、 機械学習に興味はあるけど、どのような手順で、何から勉強していったら良いかわからない という方が数名いたので、自分が今年の3月くらい〜今日に至るまで勉強してきた中から 今の自分ならこのような手順で勉強することをオススメする!という記事を書いてみようと思います。 ※自分の勉強した教材の中からのオススメになるので、偏った内容になることをご了承ください。 ※これもオススメ!というものがありましたら、ぜひ教えていただけると嬉しいです。 タイトルにあるメダルより大切なものについては最後に記載しております。 対象読者 2018年3月時点の筆者スペック 2018年3月〜今日に至るまで勉強したこと羅列 書籍 動画 udemy

                                                      機械学習初心者が約10ヶ月でメダルより大切なものを獲得できた話【kaggle Advent Calendar 17日目】 - ギークなエンジニアを目指す男
                                                    • 解放新聞による在特会関連の虚報について - 在日特権を許さない市民の会 - ニュース

                                                      SLOT88 Situs Judi Slot Online Gacor 100% Jackpot Hari ini Hadir sebagai situs judi slot online terbaru, SLOT88 saat ini menjadi salah satu pilihan bagi para penikmat permainan judi online yang ada di seluruh Indonesia. Ini semua karena permainan yang disediakan begitu seru dan mengasyikan, game slot online juga sangat mudah di akses dan dimainkan kapan saja hanya melalui HP berbasis android dan io

                                                        解放新聞による在特会関連の虚報について - 在日特権を許さない市民の会 - ニュース
                                                      • はじめてのGAN

                                                        今回はGAN(Generative Adversarial Network)を解説していきます。 GANは“Deep Learning”という本の著者でもあるIan Goodfellowが考案したモデルです。NIPS 2016でもGANのチュートリアルが行われるなど非常に注目を集めている分野で、次々に論文が出てきています。 また、QuoraのセッションでYann LeCunが、この10年の機械学習で最も面白いアイディアと述べていたりもします。 “The most interesting idea in the last 10 years in ML, in my opinion.” –Yann LeCun GANは聞いたことはあるけれどあまり追えてないという人向けに基礎から解説していきたいと思います。それでは順に見ていきましょう。 目次 基礎理論 DCGAN 実装 論文紹介 まとめ 基礎理

                                                          はじめてのGAN
                                                        • 【環境構築不要・スマホ/タブレットOK】東大松尾研のDeep Learningエンジニア育成講座『DL4US』を自習する - Qiita

                                                          Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? PR: 以前の記事 のデータサイエンティスト向け講座のColab実行方法などをまとめ、 図解速習DEEP LEARNINGという本ができました。[2019年5月版] 機械学習・深層学習を学び、トレンドを追うためのリンク150選 - Qiitaでも、一部内容をご覧いただけます 参考: Colaboratoryユーザによる非公式の情報交換Slackを試験的に立ち上げました。リンクより、登録・ご参加ください。 TL;DR いつも満員抽選となる東大松尾研Deep Learningエンジニア育成講座『DL4US』の演習資料が公開された Googl

                                                            【環境構築不要・スマホ/タブレットOK】東大松尾研のDeep Learningエンジニア育成講座『DL4US』を自習する - Qiita
                                                          • Python at Netflix

                                                            By Pythonistas at Netflix, coordinated by Amjith Ramanujam and edited by Ellen Livengood As many of us prepare to go to PyCon, we wanted to share a sampling of how Python is used at Netflix. We use Python through the full content lifecycle, from deciding which content to fund all the way to operating the CDN that serves the final video to 148 million members. We use and contribute to many open-sou

                                                              Python at Netflix
                                                            • ジャズを自動作曲する人工知能「deepjazz」、AIが作ったジャズはこんな感じ

                                                              By Jimmy Baikovicius プログラマーのJi-Sung Kim氏が36時間のハッカソンで作り上げたという自動ジャズジェネレーターが「deepjazz」です。deepjazzはPython製のディープラーニングライブラリである「Keras」と「Theano」を使用して作り上げられた2層構造の「Long short-term memory(LSTM)」で、MIDIファイル(音源データ)を与えると音楽を学習してオリジナルのジャズを作曲してくれます。 deepjazz: deep learning for jazz http://deepjazz.io/ 「deepjazz」は、Googleの「AlphaGo(アルファ碁)」やIBMの「WATSON」などのような、人工知能(AI)の一種です。Googleのアルファ碁は囲碁を打つ能力に特化したAIですが、deepjazzはその名の通り

                                                                ジャズを自動作曲する人工知能「deepjazz」、AIが作ったジャズはこんな感じ
                                                              • 自然言語処理を自習したくなったら参考になりそうなサイトなど - 鴨川にあこがれる日々

                                                                雑にですが,知ってるサイトやチュートリアルをまとめたくなったのでまとめてみました.夏ですし. 適宜更新しています. 最終更新 2018年02月03日 チュートリアル 言語処理100本ノック 言語処理100本ノック 2015 東工大の岡崎先生が作られたチュートリアルです. 他大学の研究室でも利用されています. 簡単な内容からはじまるので,プログラミングの導入としてもいいと思います. NLPプログラミングチュートリアル Graham Neubig's Teaching Carnegie Mellon UniversityのGraham Neubig先生のチュートリアルです. Githubにサンプルコードが公開されています. 各チュートリアルにはテストがついているので,実装が正しいかを確かめることができます. 扱っているトピックが広いので,かなり勉強になると思います. ソフト 形態素解析器 日本

                                                                  自然言語処理を自習したくなったら参考になりそうなサイトなど - 鴨川にあこがれる日々
                                                                • 都立大 自然言語処理研究室 - 自然言語処理を学ぶ推薦書籍

                                                                  自然言語処理を学ぶ推薦書籍を紹介します。2021年03月現在、自然言語処理を勉強したい理工系の学生・エンジニアの人は、以下の本を推薦します。 (概要)自然言語処理(放送大学出版) (理論)言語処理のための機械学習入門+深層学習による自然言語処理 (実装)Python 機械学習プログラミング 第3版 自然言語処理を勉強したい、非理工系・非エンジニアの人には、以下の本を推薦します。 (数式なし)自然言語処理の基本と技術 (数式あり)自然言語処理(放送大学出版) オライリーから出ている「入門 自然言語処理」は特殊な本(詳しい人がこれを使ってレクチャーしてくれるならともかく、独習に向いていない)で、Python 2 で書かれているだけでなく、すでに動かなくなったコードも多々あり、2019年時点では読まない方がいい本です。(それでもどうしても、意地でも読みたい人は、本家にある Python 3 対応

                                                                  • Kaggle Expertになるまで勉強したことを全て書く - Qiita

                                                                    はじめに こんにちは。Yuki | Kagglerです! 先日、Shopeeコンペの順位が確定して銀メダルをいただき、晴れてCompetition Expertになることができました。区切りがいいのでここまで取り組んできたことをまとめてみました。 ※ 6/28追記:Amazonのリンクが切れていたので貼り直しました! プログラミング&機械学習を始めて一年、ようやく Kaggle Expertになることができました!! 行列も正規分布も知らず、ターミナルなんて触ったこともない状態からのスタートでしたが、ようやくここまで来ました。 ここまで来れたのは偏にこれまで関わってきた皆様のお陰です。これからも頑張ります!! pic.twitter.com/kMkaFhqhU9 — ユウキ | Kaggler (@Yuki_Kaggler) May 12, 2021 この記事の対象者 Kaggleをやって

                                                                      Kaggle Expertになるまで勉強したことを全て書く - Qiita
                                                                    • 【Day-1】データ分析/機械学習を行うために知っておきたいことを列挙する - プロクラシスト

                                                                      データ分析ガチ勉強アドベントカレンダー一日目。 まずは指針をということで、データ分析をはじめるにあたって勉強しておきたいことと、そのリソースをまとめる。言語はPythonを想定。 興味領域が偏っている場合があるのであしからず こんなの面白いよっていうのあれば教えてくださいな ※随時更新します Pythonライブラリ 深いアレたち 機械学習のお勉強 論文 arXiv カンファ e-learning 本 twitter データを集める チートシート類 終わりに Pythonライブラリ こんなの勉強しておけば良さそうリスト。抜け漏れご容赦。 ★★★ : 必須。空で使えるようになりたいトコロ。 ★★  : 周辺ツール、知っていればより便利になるよという感じ ★   : あるアルゴリズムに特化しているようなもの。一歩先 ライブラリ 必須度 用途 numpy ★★★ 数値計算用のライブラリ。いろいろし

                                                                        【Day-1】データ分析/機械学習を行うために知っておきたいことを列挙する - プロクラシスト
                                                                      • 【2023年版】機械学習の日本語無料学習教材まとめ - Qiita

                                                                        言語&開発基礎編 PythonやSQLなどの言語と開発環境に関連することをまとめました。 機械学習に関する教材はこの次のセクションにまとめてあります。 学習環境 インストール及び使い方チュートリアルのサイトと、ある程度使い慣れた後に役立つtips集を各エディタでまとめました。 Google Colaboratory Python初学者にとって最もわかりやすいPython実行環境です。プログラミングは初めて!という方はまずこのGoogle Colaboratory(通称: Colab)から始めてみて、使い方がある程度わかったら、そのまま次のセクションのPython編に移りましょう。 Pythonプログラミング入門 難易度: ★☆☆ 東京大学の公開しているPython講座ですが、冒頭でColabの使い方を解説しています。使ったことのない方はこちらから! Google Colabの知っておくべき

                                                                          【2023年版】機械学習の日本語無料学習教材まとめ - Qiita
                                                                        • 文系エンジニアだけどAIを勉強してみる - learning.ikeay.net

                                                                          こんにちは、@ikeayです。 突然ですが、最近すっかり人工知能(AI)がバズワードになってきていますね! ここ最近だけでも、GoogleのAlphaGoが世界トップ棋士であるイ・セドル氏に勝利したことが世の中の話題をかっさらっていったのを皮切りに、レンブラントっぽい絵を生成するやつとか、1枚の絵を組み合わせて1枚の絵をつくるやつとか、自動でJazzを生成するDeepJazzだとかetc, etc... こうしてみると、この技術でほんとに職失いそうだし、芸術とはなんぞやということになりそうだし、人類滅ぼされるかもしれないし(偏見)、もうほんと怖いしつらいですよねー。 特に最近はAI絡みで毎日何かしらのニュースがあるので、日々ヒヤヒヤしてます。(あ、TechFeedってテクノロジーに特化した情報キュレーションサービスがあるんですけど、それで「人工知能」とか「深層学習」とかを登録しておくと毎日

                                                                            文系エンジニアだけどAIを勉強してみる - learning.ikeay.net
                                                                          • 可愛すぎかよ! ハッカーの新しい相棒 コマンドラインからLLMを使えるgptme|shi3z

                                                                            こういうのが欲しかったんだよ。マジで。 コマンドラインからLLMを呼び出せるgptmeというツールがアツい これは、gptmeコマンドを追加するというもの。 環境変数としてOPENAI_API_KEYとかAnthropicのキーとかを設定しておくと勝手にAPIを呼び出してくれる。もちろん、クラウドに送信するとかけしからんという勢にはローカルLLMでも対応できる。 こいつはコマンドライン版ChatGPTのようなものなので、コマンドラインで動くのだが、その真価は例えばパイプで繋いだ時とかに発揮される。 $ du -d 1|gptme "一番容量を食ってるフォル ダは何Gバイト使ってんの?" Found OpenAI API key, using OpenAI provider [10:13:32] No model specified, using recommended model for

                                                                              可愛すぎかよ! ハッカーの新しい相棒 コマンドラインからLLMを使えるgptme|shi3z
                                                                            • 自分が読んだ強化学習の資料達 - 下町データサイエンティストの日常

                                                                              こんにちは。nino_piraです。 先日、強化学習の資料の引用ツイートをしましたら、それなりに伸びたので、「もしかして、みんな強化学習に興味ある!?」と思い自分が読んだ&好きな資料をまとめてます。 また、ブログを書いているうちに「何を持って基礎とするか」などカテゴライズも自分の中でも行方不明になっていましたので、色々思うところはあると思いますが、暖かい目で読んで頂ければ幸いです。。。。 あくまでも私の経験 強化学習基礎系 [Qiita] DQN(Deep Q Network)を理解したので、Gopherくんの図を使って説明 [書籍]これからの強化学習 [pdf] (小南さん作成) 強化学習入門 [pdf] (通称) Sutton本第2版 [書籍] 機械学習スタートアップシリーズ Pythonで学ぶ強化学習 [ブログ]強化学習 もう少し強化学習を詳しく知りたい系の人へ [書籍]速習 強化学

                                                                                自分が読んだ強化学習の資料達 - 下町データサイエンティストの日常
                                                                              • はじめるDeep learning - Qiita

                                                                                そうだ、Deep learningをやろう。そんなあなたへ送る解説記事です。 そう言いながらも私自身勉強しながら書いているので誤記や勘違いなどがあるかもしれません。もし見つけたらご連絡ください。 Deep learningとは こちらのスライドがとてもよくまとまっています。 Deep learning つまるところ、Deep learningの特徴は「特徴の抽出までやってくれる」という点に尽きると思います。 例えば相撲取りを判定するモデルを構築するとしたら、普通は「腰回りサイズ」「マゲの有無」「和装か否か」といった特徴を定義して、それを元にモデルを構築することになります。ちょうど関数の引数を決めるようなイメージです。 ところが、Deep learningではこの特徴抽出もモデルにやらせてしまいます。というか、そのために多層、つまりDeepになっています。 具体的には頭のあたりの特徴、腰のあ

                                                                                  はじめるDeep learning - Qiita
                                                                                • 機械学習で乃木坂46を顏分類してみた - Aidemy Blog

                                                                                  この記事は移転しました。約2秒後に新記事へ移動します。移動しない場合はココをクリックしてください。 こんなことをしてみたい ↑これがしたい pythonによる機械学習の勉強をしたので、実践ということで、人気アイドル「乃木坂46」の個人的に好きな5人のメンバーを区別して見ました。大きな流れはこんな感じです。 web上から五人の画像を100枚ずつ取ってくる 画像から顔部分を取り出して保存、テストデータの取り出し 画像の水増し モデルを定義して、学習 テスト(顔を四角く囲って、その人の名前を出力) 説明はこんなもんにして、彼女らの可愛さについて語りたいところですが、そういうブログではないので、少し技術的なことを書きます。 今回はjupyterを使って作業を進めました。notebook形式なので結果が見やすく初心者にはいい環境でした。環境は以下。 macOS:10.13.1 python:3.6.

                                                                                    機械学習で乃木坂46を顏分類してみた - Aidemy Blog