タグ

Algorithmとalgorithmに関するtorutoのブックマーク (151)

  • サヨナラ検定、グッバイ統計的有意性/統計を使うつもりなら必読の論文はこれ

    Author:くるぶし(読書猿) twitter:@kurubushi_rm カテゴリ別記事一覧 新しいが出ました。 読書猿『独学大全』ダイヤモンド社 2020/9/29書籍版刊行、電子書籍10/21配信。 ISBN-13 : 978-4478108536 2021/06/02 11刷決定 累計200,000部(紙+電子) 2022/10/26 14刷決定 累計260,000部(紙+電子) 紀伊國屋じんぶん大賞2021 第3位 アンダー29.5人文書大賞2021 新刊部門 第1位 第2の著作です。 2017/11/20刊行、4刷まで来ました。 読書猿 (著) 『問題解決大全』 ISBN:978-4894517806 2017/12/18 電書出ました。 Kindle版・楽天Kobo版・iBooks版 韓国語版 『문제해결 대전』、繁体字版『線性VS環狀思考』も出ています。 こちらは10刷

    サヨナラ検定、グッバイ統計的有意性/統計を使うつもりなら必読の論文はこれ
  • 修正離散コサイン変換 - Wikipedia

    この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。 出典を追加して記事の信頼性向上にご協力ください。(このテンプレートの使い方) 出典検索?: "修正離散コサイン変換" – ニュース · 書籍 · スカラー · CiNii · J-STAGE · NDL · dlib.jp · ジャパンサーチ · TWL (2023年6月) 修正離散コサイン変換(しゅうせいりさんコサインへんかん)または変形離散コサイン変換 (modified discrete cosine transform; MDCT) とは、離散時間信号のサンプル値の系列を時間領域から周波数領域へ変換する離散時間信号処理技法の一種である。 主にMP3やAAC、Vorbisといった音声圧縮などで用いられている。 逆変換は逆修正離散コサイン変換 (IMDCT) である。 MDCTは、窓を半分ずつ重複させながら変換を行

  • 特徴点検出器を作ってライブラリに追加した - デー

    前々からアニメ顔類似検索のbag of featuresで使っている特徴点の決め方がイラストにあまり合っていない気がしていたけど、実装がすごく面倒くさそうだったのでやらなかった。しかし、最近SURFに特許があることが発覚して、SURFを使っている意味は特にないなーと思ったので、満足のいくものをつくろう思ったのであった。(ただ特許は気にせずにやる) ということで、こんなのができた(クリックで拡大)。 結構速いし、スケールの変化、回転、ある程度のゆがみには大体対応できている。対応点の決定は、点の特徴ベクトルが一番近い点と二番目に近い点を取って、ふたつの特徴ベクトルの距離の差を確信度として、確信度が高いもののみマッチングしたことにして表示している。 SIFTやSURFに比べると点多すぎだろ(なぜ渦巻きに…)と思うかもしれないけど、これは僕なりにイラストの特性とかbag of featuresで使

    特徴点検出器を作ってライブラリに追加した - デー
  • 3分探索 - ICPC突破専用ザク

    凸関数の極値を求める方法を知りたくなってググってみたところid:nodchipさんのエントリがヒットした. 以下,個人的なまとめ. 実数探索三種類解説 - nodchipの日記 http://d.hatena.ne.jp/nodchip/20090303/1236058357 単調関数の零点を求めるのには2分探索が使われるけど,凸関数の極値を求めるのには3分探索が使われるらしい. 三分探索は凸関数の極値を求めるために使うアルゴリズムです。このアルゴリズムは関数が微分不可能な場合にも使えます。やり方は探索領域を三分割し、真ん中二の境界のうちどちらの値が大きいかを調べ、それとは逆の方の境界を新たな探索領域の端にするというものです。一回のイテレーションで関数の計算を2回行い、探索領域が2/3になります。 3分探索がうまくいく理由は以下のとおり. f : [a,b]→R : 上に凸な関数とし,区

    3分探索 - ICPC突破専用ザク
  • PRML 読書会 #11 資料(max-sum アルゴリズム) - 木曜不足

    「パターン認識と機械学習」(PRML)読書会 #11 で担当する 8.4.5「max-sum アルゴリズム」の資料です。 8.4.5 max-sum アルゴリズム 8.3 まで モデルを表現するツールとしてグラフィカルモデルを使う 8.4 以降、周辺化や同時分布の大域最大解を求めるツールとしてのグラフィカルモデル 8.4.4 積和(sum-product) : 周辺分布を求める 8.4.5 max-sum : 同時分布の大域最大確率と、それを与える変数の値を求める max-sum algorithm 同時分布の最大解を求めるツール sum-product algorithm において 因子(local function) の対数を取り sum を max におきかえ 単調増加なlogと交換可能 非負な係数に対して分配則が成立 product を sum におきかえ ★注意★ sum-pro

    PRML 読書会 #11 資料(max-sum アルゴリズム) - 木曜不足
  • LSH(SimHash) で recall(適合率) を見積もりたい - 木曜不足

    英単語タイピングゲーム iVoca で「おすすめブック」機能をリリースしました。 ブック(単語帳)の画面に、そのブックと似ていて、同じユーザが学習しているブックを自動的に表示します。 英検の単語を集めたブックには英検の、しかもだいたい同じレベルのものを、TOEIC には TOEIC、イタリア語にはイタリア語、ドイツ語にはドイツ語、と ちゃんとおすすめできています。 外国語以外にも 古文の単語を集めたブックには古文、アメリカ合衆国の50州を覚えるブックには世界の首都や都道府県を覚えるブックをおすすめしてくれます。 学びたいブックを見つけやすくなった iVoca をこれからもよろしくお願いします。 以上、よそいきモード終わり。 今回の類似ブック探索には、ソーシャルブックマーク界隈で噂の LSH(Locality Sensitive Hashing)、特に余弦類似度を用いた SimHash を採

    LSH(SimHash) で recall(適合率) を見積もりたい - 木曜不足
  • 強化学習とは?(What is Reinforcement Learning?)

    強化学習の概要,応用上の利点,適用例,基礎理論,代表的手法,応用に必要な技術などの説明。 ページの記述は下記の解説記事をもとにWEB用に修正したものである: 木村 元,宮崎 和光,小林 重信: 強化学習システムの設計指針, 計測と制御, Vol.38, No.10, pp.618--623 (1999), 計測自動制御学会. 6 pages, postscript file, sice99.ps (1.31MB) PDF file, sice99.pdf (148KB) 第1章: 強化学習の概要 1.1 強化学習 (Reinforcement Learning) とは? 1.2 制御の視点から見た強化学習の特徴 1.3 応用上期待できること 第2章: 強化学習の適用例:ロボットの歩行動作獲得 第3章: 強化学習の基礎理論 3.1 マルコフ決定過程(Markov decision proc

    強化学習とは?(What is Reinforcement Learning?)
  • Streaming k-means approximation - tsubosakaの日記

    実家に帰省中,電車の中で読んでた論文の紹介。 概要 k-meansはクラスタリングテクニックとして非常に基的な手法である。 しかし、k-meansでは全データに対してラベリングを複数回繰り返す必要があり、全データ点を保存する必要がある、そこでk-meansの出力であるk個のクラスタ中心をワンパスで見つける方法を提案する。 ここで得られるクラスタ中心は最適値と比較したときにO(log k)の近似となっている ストリームアルゴリズムについて 論文で言っているStreamingの意味としては入力を前から見ていって、すべて保存しないアルゴリズムのことを言っている。いわゆるオンラインアルゴリズムのように入力が入ってくるたびに何かしらの結果が得られるわけではない。また,ストリームの長さは有限である事を仮定している。 k-meansとは k-meansとはデータ点 X = {x_1 , ... x_

    Streaming k-means approximation - tsubosakaの日記
  • PFIセミナー資料: 研究開発2009 - DO++

    昨日ありました、PFIでのセミナーでの発表資料です。 研究開発のチームの紹介の後に、2009年サーベイした論文の中で面白かった論文を 機械学習、データ構造、画像処理で紹介してます 紹介した話は - Multi-class CW (Multi-class Confidence Weighted Learning,) - AROW (Adaptive Regularization Of Weight Vector) - Online-EM algorithm - 全備簡潔木 (Fully-functional Succinct Tree) - 圧縮連想配列 (compressed function) - PatchMatch です。 #資料中の簡潔木の表現方法のDFUDSの紹介でtxも使用と書いてあるのは、公開しているtxでは、 LOUDSのみをつかっていますので正確ではありませんでした。これ

    PFIセミナー資料: 研究開発2009 - DO++
  • [機械学習] トピックモデル関係の論文メモ - tsubosakaの日記

    最近読んだトピックモデル関係の論文のざっとしたメモ。内容については間違って理解しているところも多々あると思います。 (追記 12/24) 最後のほうに論文を読む基礎となる文献を追加しました。 Efficient Methods for Topic Model Inference on Streaming Document Collections (KDD 2009) 論文の話は2つあって一つ目がSparseLDAというCollapsed Gibbs samplerの省メモリかつ高速な方法の提案と2つ目はオンラインで文章が入力されるような場合において訓練データと新規データをどう使うかという戦略について述べて実験している。 Collapsed Gibbs samplerを高速化しようという論文はPorteous et al.(KDD 2008)でも述べられているけどそれよりも2倍ぐらい高速(通

    [機械学習] トピックモデル関係の論文メモ - tsubosakaの日記
  • アルゴリズムイントロダクション輪講 動的計画法の発表資料 - てっく煮ブログ

    2009年3月2日に、はてな京都オフィスで開催された アルゴリズムイントロダクション輪講 の第12回で「動的計画法」について発表しました。資料をここにおいておきます。View more presentations from nitoyon.分かりやすくしようと気合を入れてまとめたら165ページの大作になっちゃいました。無駄に長くてすいません。アルゴリズムの設計と解析手法 (アルゴリズムイントロダクション)作者: T.コルメン, R.リベスト, C.シュタイン, C.ライザーソン, Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, Charles E. Leiserson, 浅野哲夫, 岩野和生, 梅尾博司, 山下雅史, 和田幸一出版社/メーカー: 近代科学社発売日: 2007/03メディア: 単行

  • トーナメントと多値分類 - DO++

    今やってる研究で、トーナメント問題を調べる機会がありました。 トーナメントは私も知らなかったのですが、勝者や順位を決める方式のことを指し、いわゆる二人ずつ戦って生き残っていく方式はノックアウトトーナメントといわれるそうです(wikipedia)。 #10000人戦う時にノックアウトトーナメントでは何回試合が行われるかというのはよくある質問ですね。 で、このトーナメント方式というのは調べてみると非常に様々なものがあります 例えばスイス式トーナメントは、最初はランダムな組み合わせで対戦、次は勝者同士と敗者同士、その次は全勝・1勝1敗・2戦全敗のそれぞれが・・というふうに同じ成績の人同士で戦う方式です。レーティングを計算して、レーティングが近いもの同士を戦わせるような拡張もあります。近いのは将棋でやってるようなものですね。 利点は全ての人が同じ試合数で戦い、また厳密な順位が決めやすいことがありま

    トーナメントと多値分類 - DO++
  • min_heapを用いた上位r個の要素の抽出 - tsubosakaの日記

    MG勉強会の発表があるため4.6ランキング検索の部分を読むついでに、最後のサブセクションの上位r個の要素を取り出す部分について実装してみた。 情報検索において、N個の候補集合から上位r個の要素を取り出すことが多い。 値が配列に格納されているとするとこれを実現するためのコードはもっとも単純に行うと以下のようになる //長さlenの配列arrayの中でトップr個の値をresultに挿入する void sort_method(int * array , int len, int r , vector<int> & result){ sort(array , array + len); copy(array + len - r , array + len , back_inserter(result)); } しかし、Nが大きいとき、MGの例だとN=100万のときにsortの処理にはおおよそ100

    min_heapを用いた上位r個の要素の抽出 - tsubosakaの日記
  • 一次元領域の重なり検出のアルゴリズムについての質問です。…

    一次元領域の重なり検出のアルゴリズムについての質問です。 たとえば 領域A(1以上-7以下;以下同様), 領域B(2-5), 領域C(3-9) から 重なり領域イ(2-3)AとB 重なり領域ロ(3-5)AとBとC 重なり領域ハ(5-7)AとC というような解をもとめるアルゴリズムで知られたものがあるでしょうか? Webページないし,書籍での資料を教えていただければ幸いです。 CやRubyなどでのサンプルがあるとなおありがたいです。

  • 日本テレビ東京で学ぶMeCabのコスト計算 | mwSoft

    今回はこの言葉の解析をMeCab+NAIST辞書にお願いして、結果を分析することで、MeCabが行っているコスト計算について勉強してみたいと思います。 とりあえず実行してみる さっそくMeCabに「日テレビ東京」を解析してもらいましょう。 $ echo 日テレビ東京 | mecab 日 名詞,固有名詞,地域,国,*,*,日,ニッポン,ニッポン,, テレビ東京 名詞,固有名詞,組織,*,*,*,テレビ東京,テレビトウキョウ,テレビトーキョー,, EOS 「日 | テレビ東京」と分けていますね。視聴率的には負けていますが、NAIST辞書的には日テレビよりもテレビ東京が優先されたようです。 ちなみに「フジテレビ東京」ではどうなるでしょうか。 $ echo フジテレビ東京 | mecab フジテレビ 名詞,固有名詞,組織,*,*,*,フジテレビ,フジテレビ,フジテレビ,, 東京 名詞,

  • 3日で作る高速特定物体認識システム (1) 物体認識とは - 人工知能に関する断創録

    情報処理学会の学会誌『情報処理』の2008年9月号(Vol.49, No.9)に「3日で作る高速特定物体認識システム」という特集記事があります。OpenCVを用いた面白そうなプロジェクトなのでレポートにまとめてみようと思います。3日でできるかはわからないけど。 残念ながらこの記事はPDFを無料でダウンロードすることができません(CiNiiでオープンアクセス可能になったみたいです)。なので会員以外で元記事が読みたい人は図書館でコピーする必要があるかも・・・また、2009年9月号の人工知能学会誌にも物体認識の解説「セマンティックギャップを超えて―画像・映像の内容理解に向けてー」があります。こちらも非常に参考になりますが同様にPDFが手に入りません・・・。他にもいくつかわかりやすい総説論文へのリンクを参考文献にあげておきます。 物体認識とは 物体認識(object recognition)は、画

    3日で作る高速特定物体認識システム (1) 物体認識とは - 人工知能に関する断創録
  • My Bookmark: Machine Learning

    私のブックマーク 学習 1. はじめに 機械学習の研究は飛躍的な進歩を遂げ、専門化が進んでいる。元々は人間の学習能力を目標に始められた研究分野だが、それどころではなくなってきたようで、全体を一望するのが困難になってきた。しかも、機械学習の一分野である帰納論理プログラミングについて、理科大の溝口文雄教授によるブックマークが昨年9月号で取り上げられていて、機械学習全体をカバーする有力サイトも紹介済だったりする。そこで、大規模で便利なサイトに筆者がたまたま訪れたサイトを織り交ぜながら、紹介したい。また、このコラムで紹介済のブックマークは省くか、違った説明を試みるので、バックナンバーも合わせて参照されたい。 2. ポータルサイト 機械学習について調べ物をするとき、とりあえずなんでもそろっているポータルサイトとしては、MLnet(Machine Learning network, http://ww

  • (9月〜最近分) - デー

    5月くらいにやるよって書いて、ずっと進んでなかったけど、少し前の連休でgaーと進めた。今ちょっと仕事がアレなのでデモサイトを作る余裕がないけど、その2としては余裕できたら置きますってところまではできてます。 今回の内容は、前回ので候補を絞って、それに対してBag of visual-wordsの類似でソートして上位N件を表示するという方法。アニメ顔に特化させるための前処理など特徴ベクトルを作るまでの過程がたくさんあるけど、そのあたりの説明はデモサイトを作ってから。 とりあえずスクショ。検索対象は4chan /c/という画像掲示板に投稿された画像からImager::AnimeFaceを使って自動で切り取った顔画像4万件。old verが前回の部品の色によるもので、new verが今回の。 正直まだまだだけど、 上位の人率が上がった 人ではないなりに「髪形はちょっと似てる」「前髪のみ激似」

    (9月〜最近分) - デー
  • 初めてのEMアルゴリズム with R - yasuhisa's blog

    混合正規分布について 混合正規分布のEMアルゴリズムによるパラメータ推定 EMアルゴリズムの単調増加性について この前はEMアルゴリズムがどんな感じのメカニズムで、どんな性質を持っているか簡単に書いた。 初めてのEMアルゴリズム - yasuhisa's blog というわけで、ちょちょいとRで書いてみることにした。お題はありがちな混合正規分布。 混合正規分布について確率変数がにがで、それぞれ0.3、0.7で生成されているというような分布が真の分布だとしよう。図で書くとこんな感じの密度関数である。 図を書くためのRのスクリプト。 mixture_gaussian <- function(x) { pi_0 <- 0.3 ifelse(runif(1) < pi_0, rnorm(1, -5, 1), rnorm(1, 5, 4)) } N <- 1000 x <- sapply(1:N,

    初めてのEMアルゴリズム with R - yasuhisa's blog
  • アルゴリズムの紹介

     ここでは、プログラムなどでよく使用されるアルゴリズムについて紹介したいと思います。 元々は、自分の頭の中を整理することを目的にこのコーナーを開設してみたのですが、最近は継続させることを目的に新しいネタを探すようになってきました。まだまだ面白いテーマがいろいろと残っているので、気力の続く限りは更新していきたいと思います。 今までに紹介したテーマに関しても、新しい内容や変更したい箇所などがたくさんあるため、新規テーマと同時進行で修正作業も行なっています。 アルゴリズムのコーナーで紹介してきたサンプル・プログラムをいくつか公開しています。「ライン・ルーチン」「円弧描画」「ペイント・ルーチン」「グラフィック・パターンの処理」「多角形の塗りつぶし」を一つにまとめた GraphicLibrary と、「確率・統計」より「一般化線形モデル」までを一つにまとめた Statistics を現在は用意して