データを分析にかける前に、出力変数を log 変換する、というのはよくあることだと思います。 次のデータを見て下さい。 このデータ、線形モデルに当てはめる前に log 変換したほうがよさそうだなーというのが見てとれます。 それもそのはず、このデータは次のように作っています。 N <- 100 x <- runif(N, min = 1, max = 2) y <- exp(x + rnorm(N, sd = 0.3)) data <- data.frame(x, y) それでは、log 変換しないバージョンと、するバージョンでモデルを作成して、AIC を比較してみましょう。 model <- lm(y ~ x, data) model.log <- lm(log(y) ~ x, data) aic <- AIC(model, model.log) print(aic) ## df AIC
![log 変換する?しない?AICでモデル比較するときの注意点 - ほくそ笑む](https://cdn-ak-scissors.b.st-hatena.com/image/square/50e4a0ca0179f4530713e5cc6a9703e7c33ce665/height=288;version=1;width=512/https%3A%2F%2Fcdn-ak.f.st-hatena.com%2Fimages%2Ffotolife%2Fh%2Fhoxo_m%2F20131218%2F20131218220445.png)