エントリーの編集
エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています
- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
ファトゥの補題 - Wikipedia
数学の分野におけるファトゥの補題(ファトゥのほだい、英: Fatou's lemma)とは、ある関数列の下極限の... 数学の分野におけるファトゥの補題(ファトゥのほだい、英: Fatou's lemma)とは、ある関数列の下極限の(ルベーグ積分の意味での)積分と、積分の下極限とを関係付ける不等式についての補題である。ピエール・ファトゥの名にちなむ。 ファトゥの補題は、ファトゥ・ルベーグの定理(英語版)や、ルベーグの優収束定理の証明に使うことが出来る。 f1, f2, f3, . . . を、測度空間 (S,Σ,μ) 上の非負可測関数の列とする。関数 f : S → [0, ∞] を各点毎に と定義する。このとき f は可測であり、 が成立する。 注釈: これらの関数は +∞ の値を取ることも許されており、積分の値も無限となる場合がある。 ファトゥの補題は、次に記載する初めの証明のように、直接的に証明することも出来る。この証明は、Royden(参考文献を見られたい)により発見された証明にさらに手を加えたも