
エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
ランダムフォレスト系ツールで特徴量の重要度を測る - Qiita
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
ランダムフォレスト系ツールで特徴量の重要度を測る - Qiita
はじめに 複数の特徴量を含むデータセットを分析する際,ランダムフォレストに代表される決定木ベースの... はじめに 複数の特徴量を含むデータセットを分析する際,ランダムフォレストに代表される決定木ベースのアンサンブル分析器では,特徴量の重要度を算出することができます.これまで,私はブラックボックスとしてこの機能を使ってきましたが,使うツールが増えてきたので,少し使い方を整理したいと思います. まず重要度算出のアルゴリズムですが,"はじめてのパターン認識"(11章)から引用させていただきます. Out-Of-Bag(OOB) 誤り率は次のように計算する.ランダムフォレストは,一つの木を作るときにブートストラップにより使用する学習データを選んでいる.その結果,約1/3のデータは学習に使われない.ある学習について,その学習データが使われなかった決定木のみを集めて部分森を構成し,その学習データをテストデータにして誤りを評価することができる. 決定木ベースのアンサンブルを行う際,上記の方法でOOB誤り率