
エントリーの編集

エントリーの編集は全ユーザーに共通の機能です。
必ずガイドラインを一読の上ご利用ください。
日本語LLMをPPOでファインチューニングする - Qiita
記事へのコメント0件
- 注目コメント
- 新着コメント
このエントリーにコメントしてみましょう。
注目コメント算出アルゴリズムの一部にLINEヤフー株式会社の「建設的コメント順位付けモデルAPI」を使用しています

- バナー広告なし
- ミュート機能あり
- ダークモード搭載
関連記事
日本語LLMをPPOでファインチューニングする - Qiita
Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure y... Deleted articles cannot be recovered. Draft of this article would be also deleted. Are you sure you want to delete this article? TL;DR 3.6Bパラメータの日本語LLMに対し全パラメータをSupervised Fine Tuning (SFT)をした さらにLoRAを使用してProximal Policy Optimization (PPO)を行った 精度を定量評価できるようなタスクでSFT, PPOを行い、PPOにより確かに精度が向上することを確かめた 学習はすべてGoogle ColabのA100 GPU1枚を用いて行った はじめに GPT-3.5などのLLMの学習は以下の3段階で行われています。 Pre-traininig: 大規模なコーパスを用いた言